L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s − 12-s + 4·13-s + 16-s + 18-s + 12·23-s − 24-s − 10·25-s + 4·26-s − 27-s + 32-s + 36-s + 16·37-s − 4·39-s + 12·46-s − 24·47-s − 48-s − 10·49-s − 10·50-s + 4·52-s − 54-s + 24·59-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.10·13-s + 1/4·16-s + 0.235·18-s + 2.50·23-s − 0.204·24-s − 2·25-s + 0.784·26-s − 0.192·27-s + 0.176·32-s + 1/6·36-s + 2.63·37-s − 0.640·39-s + 1.76·46-s − 3.50·47-s − 0.144·48-s − 1.42·49-s − 1.41·50-s + 0.554·52-s − 0.136·54-s + 3.12·59-s + ⋯ |
Λ(s)=(=(249696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(249696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
249696
= 25⋅33⋅172
|
Sign: |
1
|
Analytic conductor: |
15.9208 |
Root analytic conductor: |
1.99752 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 249696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.469840961 |
L(21) |
≈ |
2.469840961 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | C1 | 1+T |
| 17 | C1×C1 | (1−T)(1+T) |
good | 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−6T+pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C2 | (1−18T+pT2)(1+18T+pT2) |
| 97 | C2 | (1−14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.745924693621362183100177299272, −8.584868551115419667042947592500, −7.81014283472581039979750102513, −7.57323216500839527256914149425, −6.70932306148654350305246926067, −6.62762171992257665130856519803, −5.95967651264422152670977788910, −5.60715979666329449780909401068, −4.94376122657450226002634205632, −4.60759445774375135200288872743, −3.84609690192901140186989283204, −3.42809860399723990451499242436, −2.71372337045158087575655535987, −1.81193945201237649695550582777, −0.943136411131521382953657369703,
0.943136411131521382953657369703, 1.81193945201237649695550582777, 2.71372337045158087575655535987, 3.42809860399723990451499242436, 3.84609690192901140186989283204, 4.60759445774375135200288872743, 4.94376122657450226002634205632, 5.60715979666329449780909401068, 5.95967651264422152670977788910, 6.62762171992257665130856519803, 6.70932306148654350305246926067, 7.57323216500839527256914149425, 7.81014283472581039979750102513, 8.584868551115419667042947592500, 8.745924693621362183100177299272