Properties

Label 4-245e2-1.1-c3e2-0-12
Degree $4$
Conductor $60025$
Sign $1$
Analytic cond. $208.960$
Root an. cond. $3.80203$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 2·3-s + 8·4-s + 5·5-s + 6·6-s − 45·8-s + 27·9-s − 15·10-s + 45·11-s − 16·12-s − 118·13-s − 10·15-s + 135·16-s − 54·17-s − 81·18-s − 121·19-s + 40·20-s − 135·22-s − 69·23-s + 90·24-s + 354·26-s − 154·27-s − 324·29-s + 30·30-s − 88·31-s − 360·32-s − 90·33-s + ⋯
L(s)  = 1  − 1.06·2-s − 0.384·3-s + 4-s + 0.447·5-s + 0.408·6-s − 1.98·8-s + 9-s − 0.474·10-s + 1.23·11-s − 0.384·12-s − 2.51·13-s − 0.172·15-s + 2.10·16-s − 0.770·17-s − 1.06·18-s − 1.46·19-s + 0.447·20-s − 1.30·22-s − 0.625·23-s + 0.765·24-s + 2.67·26-s − 1.09·27-s − 2.07·29-s + 0.182·30-s − 0.509·31-s − 1.98·32-s − 0.474·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60025 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(60025\)    =    \(5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(208.960\)
Root analytic conductor: \(3.80203\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 60025,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 - p T + p^{2} T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 + 3 T + T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
3$C_2^2$ \( 1 + 2 T - 23 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 45 T + 694 T^{2} - 45 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 59 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 54 T - 1997 T^{2} + 54 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 121 T + 7782 T^{2} + 121 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 3 p T - 14 p^{2} T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 162 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 88 T - 22047 T^{2} + 88 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 7 p T + 12 p^{2} T^{2} - 7 p^{4} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 195 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 286 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 45 T - 101798 T^{2} - 45 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 597 T + 207532 T^{2} + 597 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 360 T - 75779 T^{2} + 360 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 392 T - 73317 T^{2} - 392 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 280 T - 222363 T^{2} - 280 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 48 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 668 T + 57207 T^{2} - 668 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 782 T + 118485 T^{2} + 782 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 768 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 1194 T + 720667 T^{2} + 1194 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 902 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.58267209736287399651128661448, −10.92346992168105237331954304574, −10.26021769626393133744860111608, −9.672811118446763062863025039888, −9.542129607324851715494398006041, −9.381113582207653616508340074642, −8.428577478688992043387629518628, −8.148237290720854196389580006949, −7.21325014567227958757266482476, −6.95935213476336409337267378419, −6.58319668320953836951187300449, −5.88957691589284154573896068572, −5.39143264305443359615586135431, −4.52165325647870607520955010196, −3.92838727740324194656104250926, −2.97775683614366429770859189630, −1.95687392609680384929042194330, −1.80984154891676207836866886978, 0, 0, 1.80984154891676207836866886978, 1.95687392609680384929042194330, 2.97775683614366429770859189630, 3.92838727740324194656104250926, 4.52165325647870607520955010196, 5.39143264305443359615586135431, 5.88957691589284154573896068572, 6.58319668320953836951187300449, 6.95935213476336409337267378419, 7.21325014567227958757266482476, 8.148237290720854196389580006949, 8.428577478688992043387629518628, 9.381113582207653616508340074642, 9.542129607324851715494398006041, 9.672811118446763062863025039888, 10.26021769626393133744860111608, 10.92346992168105237331954304574, 11.58267209736287399651128661448

Graph of the $Z$-function along the critical line