L(s) = 1 | − 3·2-s − 2·3-s + 8·4-s + 5·5-s + 6·6-s − 45·8-s + 27·9-s − 15·10-s + 45·11-s − 16·12-s − 118·13-s − 10·15-s + 135·16-s − 54·17-s − 81·18-s − 121·19-s + 40·20-s − 135·22-s − 69·23-s + 90·24-s + 354·26-s − 154·27-s − 324·29-s + 30·30-s − 88·31-s − 360·32-s − 90·33-s + ⋯ |
L(s) = 1 | − 1.06·2-s − 0.384·3-s + 4-s + 0.447·5-s + 0.408·6-s − 1.98·8-s + 9-s − 0.474·10-s + 1.23·11-s − 0.384·12-s − 2.51·13-s − 0.172·15-s + 2.10·16-s − 0.770·17-s − 1.06·18-s − 1.46·19-s + 0.447·20-s − 1.30·22-s − 0.625·23-s + 0.765·24-s + 2.67·26-s − 1.09·27-s − 2.07·29-s + 0.182·30-s − 0.509·31-s − 1.98·32-s − 0.474·33-s + ⋯ |
Λ(s)=(=(60025s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(60025s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
60025
= 52⋅74
|
Sign: |
1
|
Analytic conductor: |
208.960 |
Root analytic conductor: |
3.80203 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 60025, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | C2 | 1−pT+p2T2 |
| 7 | | 1 |
good | 2 | C22 | 1+3T+T2+3p3T3+p6T4 |
| 3 | C22 | 1+2T−23T2+2p3T3+p6T4 |
| 11 | C22 | 1−45T+694T2−45p3T3+p6T4 |
| 13 | C2 | (1+59T+p3T2)2 |
| 17 | C22 | 1+54T−1997T2+54p3T3+p6T4 |
| 19 | C22 | 1+121T+7782T2+121p3T3+p6T4 |
| 23 | C22 | 1+3pT−14p2T2+3p4T3+p6T4 |
| 29 | C2 | (1+162T+p3T2)2 |
| 31 | C22 | 1+88T−22047T2+88p3T3+p6T4 |
| 37 | C22 | 1−7pT+12p2T2−7p4T3+p6T4 |
| 41 | C2 | (1+195T+p3T2)2 |
| 43 | C2 | (1+286T+p3T2)2 |
| 47 | C22 | 1−45T−101798T2−45p3T3+p6T4 |
| 53 | C22 | 1+597T+207532T2+597p3T3+p6T4 |
| 59 | C22 | 1+360T−75779T2+360p3T3+p6T4 |
| 61 | C22 | 1−392T−73317T2−392p3T3+p6T4 |
| 67 | C22 | 1−280T−222363T2−280p3T3+p6T4 |
| 71 | C2 | (1−48T+p3T2)2 |
| 73 | C22 | 1−668T+57207T2−668p3T3+p6T4 |
| 79 | C22 | 1+782T+118485T2+782p3T3+p6T4 |
| 83 | C2 | (1+768T+p3T2)2 |
| 89 | C22 | 1+1194T+720667T2+1194p3T3+p6T4 |
| 97 | C2 | (1+902T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.58267209736287399651128661448, −10.92346992168105237331954304574, −10.26021769626393133744860111608, −9.672811118446763062863025039888, −9.542129607324851715494398006041, −9.381113582207653616508340074642, −8.428577478688992043387629518628, −8.148237290720854196389580006949, −7.21325014567227958757266482476, −6.95935213476336409337267378419, −6.58319668320953836951187300449, −5.88957691589284154573896068572, −5.39143264305443359615586135431, −4.52165325647870607520955010196, −3.92838727740324194656104250926, −2.97775683614366429770859189630, −1.95687392609680384929042194330, −1.80984154891676207836866886978, 0, 0,
1.80984154891676207836866886978, 1.95687392609680384929042194330, 2.97775683614366429770859189630, 3.92838727740324194656104250926, 4.52165325647870607520955010196, 5.39143264305443359615586135431, 5.88957691589284154573896068572, 6.58319668320953836951187300449, 6.95935213476336409337267378419, 7.21325014567227958757266482476, 8.148237290720854196389580006949, 8.428577478688992043387629518628, 9.381113582207653616508340074642, 9.542129607324851715494398006041, 9.672811118446763062863025039888, 10.26021769626393133744860111608, 10.92346992168105237331954304574, 11.58267209736287399651128661448