Properties

Label 4-243675-1.1-c1e2-0-5
Degree $4$
Conductor $243675$
Sign $-1$
Analytic cond. $15.5369$
Root an. cond. $1.98536$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s + 4·7-s + 9-s + 12-s + 2·13-s − 3·16-s − 6·19-s − 4·21-s − 25-s − 27-s − 4·28-s − 2·31-s − 36-s − 4·37-s − 2·39-s − 10·43-s + 3·48-s + 2·49-s − 2·52-s + 6·57-s − 4·61-s + 4·63-s + 7·64-s − 6·67-s + 75-s + 6·76-s + ⋯
L(s)  = 1  − 0.577·3-s − 1/2·4-s + 1.51·7-s + 1/3·9-s + 0.288·12-s + 0.554·13-s − 3/4·16-s − 1.37·19-s − 0.872·21-s − 1/5·25-s − 0.192·27-s − 0.755·28-s − 0.359·31-s − 1/6·36-s − 0.657·37-s − 0.320·39-s − 1.52·43-s + 0.433·48-s + 2/7·49-s − 0.277·52-s + 0.794·57-s − 0.512·61-s + 0.503·63-s + 7/8·64-s − 0.733·67-s + 0.115·75-s + 0.688·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243675 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243675 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(243675\)    =    \(3^{3} \cdot 5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(15.5369\)
Root analytic conductor: \(1.98536\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 243675,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
5$C_2$ \( 1 + T^{2} \)
19$C_2$ \( 1 + 6 T + p T^{2} \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 44 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.593917946955164955871663391398, −8.409050662816037013658497211522, −7.85668232398436390657866215570, −7.36340252768348613997453202888, −6.59003416492810382038434874830, −6.53512873780771400495109952978, −5.57075046284373331718582908483, −5.36004521642751391049304360231, −4.62388312892885559329095659142, −4.39223064490415808368029175552, −3.85023417367922247417552763507, −2.92400971955770211327520464920, −1.92577471099237739968377247932, −1.48413346507443369161719444742, 0, 1.48413346507443369161719444742, 1.92577471099237739968377247932, 2.92400971955770211327520464920, 3.85023417367922247417552763507, 4.39223064490415808368029175552, 4.62388312892885559329095659142, 5.36004521642751391049304360231, 5.57075046284373331718582908483, 6.53512873780771400495109952978, 6.59003416492810382038434874830, 7.36340252768348613997453202888, 7.85668232398436390657866215570, 8.409050662816037013658497211522, 8.593917946955164955871663391398

Graph of the $Z$-function along the critical line