L(s) = 1 | − 3-s − 4-s + 4·7-s + 9-s + 12-s + 2·13-s − 3·16-s − 6·19-s − 4·21-s − 25-s − 27-s − 4·28-s − 2·31-s − 36-s − 4·37-s − 2·39-s − 10·43-s + 3·48-s + 2·49-s − 2·52-s + 6·57-s − 4·61-s + 4·63-s + 7·64-s − 6·67-s + 75-s + 6·76-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1/2·4-s + 1.51·7-s + 1/3·9-s + 0.288·12-s + 0.554·13-s − 3/4·16-s − 1.37·19-s − 0.872·21-s − 1/5·25-s − 0.192·27-s − 0.755·28-s − 0.359·31-s − 1/6·36-s − 0.657·37-s − 0.320·39-s − 1.52·43-s + 0.433·48-s + 2/7·49-s − 0.277·52-s + 0.794·57-s − 0.512·61-s + 0.503·63-s + 7/8·64-s − 0.733·67-s + 0.115·75-s + 0.688·76-s + ⋯ |
Λ(s)=(=(243675s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(243675s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
243675
= 33⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
15.5369 |
Root analytic conductor: |
1.98536 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 243675, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1+T |
| 5 | C2 | 1+T2 |
| 19 | C2 | 1+6T+pT2 |
good | 2 | C22 | 1+T2+p2T4 |
| 7 | C2×C2 | (1−4T+pT2)(1+pT2) |
| 11 | C22 | 1−4T2+p2T4 |
| 13 | C2×C2 | (1−4T+pT2)(1+2T+pT2) |
| 17 | C22 | 1−6T2+p2T4 |
| 23 | C22 | 1−40T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2×C2 | (1+pT2)(1+2T+pT2) |
| 37 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 41 | C22 | 1−70T2+p2T4 |
| 43 | C2×C2 | (1+2T+pT2)(1+8T+pT2) |
| 47 | C22 | 1+32T2+p2T4 |
| 53 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 59 | C22 | 1−38T2+p2T4 |
| 61 | C2×C2 | (1+pT2)(1+4T+pT2) |
| 67 | C2×C2 | (1−4T+pT2)(1+10T+pT2) |
| 71 | C22 | 1−90T2+p2T4 |
| 73 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 79 | C2×C2 | (1+8T+pT2)(1+12T+pT2) |
| 83 | C22 | 1−44T2+p2T4 |
| 89 | C22 | 1−150T2+p2T4 |
| 97 | C2×C2 | (1+8T+pT2)(1+10T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.593917946955164955871663391398, −8.409050662816037013658497211522, −7.85668232398436390657866215570, −7.36340252768348613997453202888, −6.59003416492810382038434874830, −6.53512873780771400495109952978, −5.57075046284373331718582908483, −5.36004521642751391049304360231, −4.62388312892885559329095659142, −4.39223064490415808368029175552, −3.85023417367922247417552763507, −2.92400971955770211327520464920, −1.92577471099237739968377247932, −1.48413346507443369161719444742, 0,
1.48413346507443369161719444742, 1.92577471099237739968377247932, 2.92400971955770211327520464920, 3.85023417367922247417552763507, 4.39223064490415808368029175552, 4.62388312892885559329095659142, 5.36004521642751391049304360231, 5.57075046284373331718582908483, 6.53512873780771400495109952978, 6.59003416492810382038434874830, 7.36340252768348613997453202888, 7.85668232398436390657866215570, 8.409050662816037013658497211522, 8.593917946955164955871663391398