L(s) = 1 | + 3-s − 3·4-s − 4·7-s + 9-s − 3·12-s + 5·16-s + 2·19-s − 4·21-s + 25-s + 27-s + 12·28-s − 3·36-s + 8·37-s − 4·43-s + 5·48-s − 2·49-s + 2·57-s + 4·61-s − 4·63-s − 3·64-s − 16·67-s + 28·73-s + 75-s − 6·76-s + 16·79-s + 81-s + 12·84-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 3/2·4-s − 1.51·7-s + 1/3·9-s − 0.866·12-s + 5/4·16-s + 0.458·19-s − 0.872·21-s + 1/5·25-s + 0.192·27-s + 2.26·28-s − 1/2·36-s + 1.31·37-s − 0.609·43-s + 0.721·48-s − 2/7·49-s + 0.264·57-s + 0.512·61-s − 0.503·63-s − 3/8·64-s − 1.95·67-s + 3.27·73-s + 0.115·75-s − 0.688·76-s + 1.80·79-s + 1/9·81-s + 1.30·84-s + ⋯ |
Λ(s)=(=(243675s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(243675s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
243675
= 33⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
15.5369 |
Root analytic conductor: |
1.98536 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 243675, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1−T |
| 5 | C1×C1 | (1−T)(1+T) |
| 19 | C1 | (1−T)2 |
good | 2 | C2 | (1−T+pT2)(1+T+pT2) |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−4T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1+2T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−2T+pT2)2 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1+12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.836488963226532523388598253810, −8.311172749518175221259006108214, −7.944956574862892187546933534941, −7.44218328127442158412477604159, −6.69343741358824607018216997419, −6.43277558403273238107542389585, −5.81033642723526554045616411588, −5.08269165937541766478904797647, −4.81376783679940109514525317705, −3.93065235513561826916389859535, −3.73246630802271223857044732290, −3.06388291591923378327344798065, −2.45875404104195454497297562929, −1.15112547813740378682858966686, 0,
1.15112547813740378682858966686, 2.45875404104195454497297562929, 3.06388291591923378327344798065, 3.73246630802271223857044732290, 3.93065235513561826916389859535, 4.81376783679940109514525317705, 5.08269165937541766478904797647, 5.81033642723526554045616411588, 6.43277558403273238107542389585, 6.69343741358824607018216997419, 7.44218328127442158412477604159, 7.944956574862892187546933534941, 8.311172749518175221259006108214, 8.836488963226532523388598253810