Properties

Label 4-243675-1.1-c1e2-0-3
Degree $4$
Conductor $243675$
Sign $-1$
Analytic cond. $15.5369$
Root an. cond. $1.98536$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·4-s − 4·7-s + 9-s − 3·12-s + 5·16-s + 2·19-s − 4·21-s + 25-s + 27-s + 12·28-s − 3·36-s + 8·37-s − 4·43-s + 5·48-s − 2·49-s + 2·57-s + 4·61-s − 4·63-s − 3·64-s − 16·67-s + 28·73-s + 75-s − 6·76-s + 16·79-s + 81-s + 12·84-s + ⋯
L(s)  = 1  + 0.577·3-s − 3/2·4-s − 1.51·7-s + 1/3·9-s − 0.866·12-s + 5/4·16-s + 0.458·19-s − 0.872·21-s + 1/5·25-s + 0.192·27-s + 2.26·28-s − 1/2·36-s + 1.31·37-s − 0.609·43-s + 0.721·48-s − 2/7·49-s + 0.264·57-s + 0.512·61-s − 0.503·63-s − 3/8·64-s − 1.95·67-s + 3.27·73-s + 0.115·75-s − 0.688·76-s + 1.80·79-s + 1/9·81-s + 1.30·84-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243675 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243675 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(243675\)    =    \(3^{3} \cdot 5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(15.5369\)
Root analytic conductor: \(1.98536\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 243675,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.836488963226532523388598253810, −8.311172749518175221259006108214, −7.944956574862892187546933534941, −7.44218328127442158412477604159, −6.69343741358824607018216997419, −6.43277558403273238107542389585, −5.81033642723526554045616411588, −5.08269165937541766478904797647, −4.81376783679940109514525317705, −3.93065235513561826916389859535, −3.73246630802271223857044732290, −3.06388291591923378327344798065, −2.45875404104195454497297562929, −1.15112547813740378682858966686, 0, 1.15112547813740378682858966686, 2.45875404104195454497297562929, 3.06388291591923378327344798065, 3.73246630802271223857044732290, 3.93065235513561826916389859535, 4.81376783679940109514525317705, 5.08269165937541766478904797647, 5.81033642723526554045616411588, 6.43277558403273238107542389585, 6.69343741358824607018216997419, 7.44218328127442158412477604159, 7.944956574862892187546933534941, 8.311172749518175221259006108214, 8.836488963226532523388598253810

Graph of the $Z$-function along the critical line