L(s) = 1 | − 2·2-s − 3-s − 4-s + 2·6-s + 8·8-s + 9-s + 12-s − 7·16-s − 2·18-s + 4·19-s − 8·24-s + 25-s − 27-s − 4·29-s − 14·32-s − 36-s − 8·38-s + 20·41-s + 8·43-s + 7·48-s − 14·49-s − 2·50-s − 20·53-s + 2·54-s − 4·57-s + 8·58-s − 8·59-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.577·3-s − 1/2·4-s + 0.816·6-s + 2.82·8-s + 1/3·9-s + 0.288·12-s − 7/4·16-s − 0.471·18-s + 0.917·19-s − 1.63·24-s + 1/5·25-s − 0.192·27-s − 0.742·29-s − 2.47·32-s − 1/6·36-s − 1.29·38-s + 3.12·41-s + 1.21·43-s + 1.01·48-s − 2·49-s − 0.282·50-s − 2.74·53-s + 0.272·54-s − 0.529·57-s + 1.05·58-s − 1.04·59-s + ⋯ |
Λ(s)=(=(243675s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(243675s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
243675
= 33⋅52⋅192
|
Sign: |
−1
|
Analytic conductor: |
15.5369 |
Root analytic conductor: |
1.98536 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 243675, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1+T |
| 5 | C1×C1 | (1−T)(1+T) |
| 19 | C2 | 1−4T+pT2 |
good | 2 | C2 | (1+T+pT2)2 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)(1+2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.896447809747983381121393959041, −8.232011963291614168935511350860, −7.77071280677534797445852255244, −7.66488013441745380243230842523, −7.11524013136289051004798684067, −6.34145167556094658057083324143, −5.83679390833615760339265246745, −5.23920392624592057055772361749, −4.72109247762374245491183934060, −4.33195666036117235086666220277, −3.72492686467354363460541892516, −2.85380672919944569836723726469, −1.66341921070628603647910394136, −1.05029361783004892799606717843, 0,
1.05029361783004892799606717843, 1.66341921070628603647910394136, 2.85380672919944569836723726469, 3.72492686467354363460541892516, 4.33195666036117235086666220277, 4.72109247762374245491183934060, 5.23920392624592057055772361749, 5.83679390833615760339265246745, 6.34145167556094658057083324143, 7.11524013136289051004798684067, 7.66488013441745380243230842523, 7.77071280677534797445852255244, 8.232011963291614168935511350860, 8.896447809747983381121393959041