L(s) = 1 | − 3-s − 3·4-s + 8·7-s + 9-s + 3·12-s + 4·13-s + 5·16-s − 2·19-s − 8·21-s + 25-s − 27-s − 24·28-s − 3·36-s − 12·37-s − 4·39-s + 16·43-s − 5·48-s + 34·49-s − 12·52-s + 2·57-s + 28·61-s + 8·63-s − 3·64-s − 8·67-s − 28·73-s − 75-s + 6·76-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 3/2·4-s + 3.02·7-s + 1/3·9-s + 0.866·12-s + 1.10·13-s + 5/4·16-s − 0.458·19-s − 1.74·21-s + 1/5·25-s − 0.192·27-s − 4.53·28-s − 1/2·36-s − 1.97·37-s − 0.640·39-s + 2.43·43-s − 0.721·48-s + 34/7·49-s − 1.66·52-s + 0.264·57-s + 3.58·61-s + 1.00·63-s − 3/8·64-s − 0.977·67-s − 3.27·73-s − 0.115·75-s + 0.688·76-s + ⋯ |
Λ(s)=(=(243675s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(243675s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
243675
= 33⋅52⋅192
|
Sign: |
1
|
Analytic conductor: |
15.5369 |
Root analytic conductor: |
1.98536 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 243675, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.533147475 |
L(21) |
≈ |
1.533147475 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1+T |
| 5 | C1×C1 | (1−T)(1+T) |
| 19 | C1 | (1+T)2 |
good | 2 | C2 | (1−T+pT2)(1+T+pT2) |
| 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−14T+pT2)2 |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+14T+pT2)2 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.956131697052494305782515642843, −8.576861436588155713465515075006, −8.056447043933612031171269197880, −7.79111029211693930669614606595, −7.22090991652715915706448156971, −6.54655367252788500605108631348, −5.59885321084019164088416378698, −5.57442263951836682011583202205, −4.80915338219819536204131275847, −4.73512523477553586192350141458, −4.00775128266596845974693279239, −3.75150945152824378664368493386, −2.32830304228468473527730093464, −1.55903104009719190466896724014, −0.908717833826787650120905118138,
0.908717833826787650120905118138, 1.55903104009719190466896724014, 2.32830304228468473527730093464, 3.75150945152824378664368493386, 4.00775128266596845974693279239, 4.73512523477553586192350141458, 4.80915338219819536204131275847, 5.57442263951836682011583202205, 5.59885321084019164088416378698, 6.54655367252788500605108631348, 7.22090991652715915706448156971, 7.79111029211693930669614606595, 8.056447043933612031171269197880, 8.576861436588155713465515075006, 8.956131697052494305782515642843