Properties

Label 4-234e2-1.1-c1e2-0-26
Degree $4$
Conductor $54756$
Sign $-1$
Analytic cond. $3.49129$
Root an. cond. $1.36693$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 4·7-s − 2·13-s + 16-s − 12·19-s − 6·25-s − 4·28-s − 4·31-s + 12·37-s − 16·43-s − 2·49-s − 2·52-s + 20·61-s + 64-s − 4·67-s + 28·73-s − 12·76-s − 8·79-s + 8·91-s − 20·97-s − 6·100-s + 8·103-s + 20·109-s − 4·112-s − 6·121-s − 4·124-s + 127-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.51·7-s − 0.554·13-s + 1/4·16-s − 2.75·19-s − 6/5·25-s − 0.755·28-s − 0.718·31-s + 1.97·37-s − 2.43·43-s − 2/7·49-s − 0.277·52-s + 2.56·61-s + 1/8·64-s − 0.488·67-s + 3.27·73-s − 1.37·76-s − 0.900·79-s + 0.838·91-s − 2.03·97-s − 3/5·100-s + 0.788·103-s + 1.91·109-s − 0.377·112-s − 0.545·121-s − 0.359·124-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54756 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(54756\)    =    \(2^{2} \cdot 3^{4} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(3.49129\)
Root analytic conductor: \(1.36693\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 54756,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3 \( 1 \)
13$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.773699703719295926726447008045, −9.511260567162705652960388658514, −8.695739660347841822203445826112, −8.241527102852606326983085030222, −7.76516545555292037952264969735, −6.93707785293490008685942511031, −6.49638165287752346862203973768, −6.33856513547641234727266817168, −5.59584593532556316161391417712, −4.80645914681781210957697738257, −3.99394475360161838020150844401, −3.53791924823882088462258917674, −2.57523735650192716532994366231, −2.01663812390586556648231292076, 0, 2.01663812390586556648231292076, 2.57523735650192716532994366231, 3.53791924823882088462258917674, 3.99394475360161838020150844401, 4.80645914681781210957697738257, 5.59584593532556316161391417712, 6.33856513547641234727266817168, 6.49638165287752346862203973768, 6.93707785293490008685942511031, 7.76516545555292037952264969735, 8.241527102852606326983085030222, 8.695739660347841822203445826112, 9.511260567162705652960388658514, 9.773699703719295926726447008045

Graph of the $Z$-function along the critical line