L(s) = 1 | + 4-s − 4·7-s − 2·13-s + 16-s − 12·19-s − 6·25-s − 4·28-s − 4·31-s + 12·37-s − 16·43-s − 2·49-s − 2·52-s + 20·61-s + 64-s − 4·67-s + 28·73-s − 12·76-s − 8·79-s + 8·91-s − 20·97-s − 6·100-s + 8·103-s + 20·109-s − 4·112-s − 6·121-s − 4·124-s + 127-s + ⋯ |
L(s) = 1 | + 1/2·4-s − 1.51·7-s − 0.554·13-s + 1/4·16-s − 2.75·19-s − 6/5·25-s − 0.755·28-s − 0.718·31-s + 1.97·37-s − 2.43·43-s − 2/7·49-s − 0.277·52-s + 2.56·61-s + 1/8·64-s − 0.488·67-s + 3.27·73-s − 1.37·76-s − 0.900·79-s + 0.838·91-s − 2.03·97-s − 3/5·100-s + 0.788·103-s + 1.91·109-s − 0.377·112-s − 0.545·121-s − 0.359·124-s + 0.0887·127-s + ⋯ |
Λ(s)=(=(54756s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(54756s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
54756
= 22⋅34⋅132
|
Sign: |
−1
|
Analytic conductor: |
3.49129 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 54756, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | | 1 |
| 13 | C1 | (1+T)2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1−10T+pT2)2 |
| 67 | C2 | (1+2T+pT2)2 |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C2 | (1−14T+pT2)2 |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.773699703719295926726447008045, −9.511260567162705652960388658514, −8.695739660347841822203445826112, −8.241527102852606326983085030222, −7.76516545555292037952264969735, −6.93707785293490008685942511031, −6.49638165287752346862203973768, −6.33856513547641234727266817168, −5.59584593532556316161391417712, −4.80645914681781210957697738257, −3.99394475360161838020150844401, −3.53791924823882088462258917674, −2.57523735650192716532994366231, −2.01663812390586556648231292076, 0,
2.01663812390586556648231292076, 2.57523735650192716532994366231, 3.53791924823882088462258917674, 3.99394475360161838020150844401, 4.80645914681781210957697738257, 5.59584593532556316161391417712, 6.33856513547641234727266817168, 6.49638165287752346862203973768, 6.93707785293490008685942511031, 7.76516545555292037952264969735, 8.241527102852606326983085030222, 8.695739660347841822203445826112, 9.511260567162705652960388658514, 9.773699703719295926726447008045