Properties

Label 4-2268e2-1.1-c0e2-0-1
Degree $4$
Conductor $5143824$
Sign $1$
Analytic cond. $1.28115$
Root an. cond. $1.06389$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·13-s − 3·19-s − 25-s − 37-s − 43-s + 3·49-s − 2·67-s + 3·73-s − 2·79-s + 6·91-s − 3·103-s − 109-s + 121-s + 127-s + 131-s + 6·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5·169-s + 173-s + 2·175-s + ⋯
L(s)  = 1  − 2·7-s − 3·13-s − 3·19-s − 25-s − 37-s − 43-s + 3·49-s − 2·67-s + 3·73-s − 2·79-s + 6·91-s − 3·103-s − 109-s + 121-s + 127-s + 131-s + 6·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5·169-s + 173-s + 2·175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5143824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5143824\)    =    \(2^{4} \cdot 3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.28115\)
Root analytic conductor: \(1.06389\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5143824,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1041229574\)
\(L(\frac12)\) \(\approx\) \(0.1041229574\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.574204820740111496243966049823, −9.018151897168569056718004338847, −8.819159151122178194926460403699, −8.075151984491076032076500333442, −8.024770078571018137125466061662, −7.30208972662518895185062778617, −7.00081280337659589689183162227, −6.61833868672080014786231068553, −6.58279203004158094002444953168, −5.77702885276373498323598161659, −5.67479181888446398596094503121, −4.92982020567103193352330236177, −4.64136921014109182481151666043, −3.98683951580907400592450114206, −3.90316651102538969112221399413, −2.96457243555450345273859150733, −2.80711424125016722309785520725, −2.17775552206390540664676417279, −1.89191983440623025157436022048, −0.19936798300695318836333084695, 0.19936798300695318836333084695, 1.89191983440623025157436022048, 2.17775552206390540664676417279, 2.80711424125016722309785520725, 2.96457243555450345273859150733, 3.90316651102538969112221399413, 3.98683951580907400592450114206, 4.64136921014109182481151666043, 4.92982020567103193352330236177, 5.67479181888446398596094503121, 5.77702885276373498323598161659, 6.58279203004158094002444953168, 6.61833868672080014786231068553, 7.00081280337659589689183162227, 7.30208972662518895185062778617, 8.024770078571018137125466061662, 8.075151984491076032076500333442, 8.819159151122178194926460403699, 9.018151897168569056718004338847, 9.574204820740111496243966049823

Graph of the $Z$-function along the critical line