L(s) = 1 | − 4·5-s − 3·9-s + 16·19-s + 2·25-s − 12·29-s − 8·43-s + 12·45-s + 16·47-s + 49-s − 12·53-s − 8·67-s + 16·71-s + 20·73-s + 9·81-s − 64·95-s − 12·97-s − 4·101-s − 6·121-s + 28·125-s + 127-s + 131-s + 137-s + 139-s + 48·145-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 9-s + 3.67·19-s + 2/5·25-s − 2.22·29-s − 1.21·43-s + 1.78·45-s + 2.33·47-s + 1/7·49-s − 1.64·53-s − 0.977·67-s + 1.89·71-s + 2.34·73-s + 81-s − 6.56·95-s − 1.21·97-s − 0.398·101-s − 0.545·121-s + 2.50·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 3.98·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(225792s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(225792s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
225792
= 29⋅32⋅72
|
Sign: |
−1
|
Analytic conductor: |
14.3966 |
Root analytic conductor: |
1.94789 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 225792, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+pT2 |
| 7 | C1×C1 | (1−T)(1+T) |
good | 5 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−8T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1+4T+pT2)2 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 83 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.749304120934004278681759852831, −8.093537689649372229665039418958, −7.79292083571821938290976650763, −7.40397429472305265033368100557, −7.26382021666693896035142333427, −6.35373904523042773985731435784, −5.69394971603405508863657314834, −5.29340219049011126125230323142, −4.92225264716551837532790929786, −3.89550776474805329328185747620, −3.60173413237973468362473708205, −3.26735667825841356907489548421, −2.40145156924384381758797773878, −1.15037892508990574535308118020, 0,
1.15037892508990574535308118020, 2.40145156924384381758797773878, 3.26735667825841356907489548421, 3.60173413237973468362473708205, 3.89550776474805329328185747620, 4.92225264716551837532790929786, 5.29340219049011126125230323142, 5.69394971603405508863657314834, 6.35373904523042773985731435784, 7.26382021666693896035142333427, 7.40397429472305265033368100557, 7.79292083571821938290976650763, 8.093537689649372229665039418958, 8.749304120934004278681759852831