L(s) = 1 | + 2·7-s − 6·9-s − 12·17-s − 6·25-s − 16·31-s + 4·41-s + 16·47-s + 3·49-s − 12·63-s + 16·71-s + 20·73-s − 32·79-s + 27·81-s − 12·89-s − 12·97-s + 32·103-s + 4·113-s − 24·119-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 72·153-s + 157-s + ⋯ |
L(s) = 1 | + 0.755·7-s − 2·9-s − 2.91·17-s − 6/5·25-s − 2.87·31-s + 0.624·41-s + 2.33·47-s + 3/7·49-s − 1.51·63-s + 1.89·71-s + 2.34·73-s − 3.60·79-s + 3·81-s − 1.27·89-s − 1.21·97-s + 3.15·103-s + 0.376·113-s − 2.20·119-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 5.82·153-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(50176s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(50176s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
50176
= 210⋅72
|
Sign: |
−1
|
Analytic conductor: |
3.19926 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 50176, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)2 |
good | 3 | C2 | (1+pT2)2 |
| 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+16T+pT2)2 |
| 83 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.688287404638284990728895668207, −9.117894034638208548514808203742, −8.749304120934004278681759852831, −8.560607806232820418165457845354, −7.79292083571821938290976650763, −7.26382021666693896035142333427, −6.67949194679031572918581545842, −5.82613210142107824134972732669, −5.69394971603405508863657314834, −4.92225264716551837532790929786, −4.18465932715971087267449515138, −3.60173413237973468362473708205, −2.40145156924384381758797773878, −2.14556791802447766709825303506, 0,
2.14556791802447766709825303506, 2.40145156924384381758797773878, 3.60173413237973468362473708205, 4.18465932715971087267449515138, 4.92225264716551837532790929786, 5.69394971603405508863657314834, 5.82613210142107824134972732669, 6.67949194679031572918581545842, 7.26382021666693896035142333427, 7.79292083571821938290976650763, 8.560607806232820418165457845354, 8.749304120934004278681759852831, 9.117894034638208548514808203742, 9.688287404638284990728895668207