L(s) = 1 | + 2-s − 11·4-s − 10·5-s − 15·8-s − 10·10-s − 4·11-s + 22·13-s + 61·16-s + 58·17-s + 110·20-s − 4·22-s − 82·23-s + 75·25-s + 22·26-s − 334·29-s + 210·31-s + 89·32-s + 58·34-s + 6·37-s + 150·40-s + 176·41-s + 46·43-s + 44·44-s − 82·46-s + 514·47-s + 75·50-s − 242·52-s + ⋯ |
L(s) = 1 | + 0.353·2-s − 1.37·4-s − 0.894·5-s − 0.662·8-s − 0.316·10-s − 0.109·11-s + 0.469·13-s + 0.953·16-s + 0.827·17-s + 1.22·20-s − 0.0387·22-s − 0.743·23-s + 3/5·25-s + 0.165·26-s − 2.13·29-s + 1.21·31-s + 0.491·32-s + 0.292·34-s + 0.0266·37-s + 0.592·40-s + 0.670·41-s + 0.163·43-s + 0.150·44-s − 0.262·46-s + 1.59·47-s + 0.212·50-s − 0.645·52-s + ⋯ |
Λ(s)=(=(4862025s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(4862025s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4862025
= 34⋅52⋅74
|
Sign: |
1
|
Analytic conductor: |
16925.8 |
Root analytic conductor: |
11.4061 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 4862025, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+pT)2 |
| 7 | | 1 |
good | 2 | D4 | 1−T+3p2T2−p3T3+p6T4 |
| 11 | D4 | 1+4T+2598T2+4p3T3+p6T4 |
| 13 | D4 | 1−22T+2458T2−22p3T3+p6T4 |
| 17 | D4 | 1−58T+7794T2−58p3T3+p6T4 |
| 19 | C22 | 1+5490T2+p6T4 |
| 23 | D4 | 1+82T+25182T2+82p3T3+p6T4 |
| 29 | D4 | 1+334T+72842T2+334p3T3+p6T4 |
| 31 | D4 | 1−210T+69230T2−210p3T3+p6T4 |
| 37 | D4 | 1−6T+97490T2−6p3T3+p6T4 |
| 41 | D4 | 1−176T+134094T2−176p3T3+p6T4 |
| 43 | D4 | 1−46T+42430T2−46p3T3+p6T4 |
| 47 | D4 | 1−514T+269870T2−514p3T3+p6T4 |
| 53 | D4 | 1+808T+449478T2+808p3T3+p6T4 |
| 59 | C2 | (1−284T+p3T2)2 |
| 61 | D4 | 1−618T+515018T2−618p3T3+p6T4 |
| 67 | D4 | 1−694T+681118T2−694p3T3+p6T4 |
| 71 | D4 | 1+814T+769934T2+814p3T3+p6T4 |
| 73 | D4 | 1+82T+422290T2+82p3T3+p6T4 |
| 79 | D4 | 1−600T+618846T2−600p3T3+p6T4 |
| 83 | D4 | 1+268T+779030T2+268p3T3+p6T4 |
| 89 | D4 | 1+72T+448286T2+72p3T3+p6T4 |
| 97 | D4 | 1+1626T+1498938T2+1626p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.313986404571865142652630448011, −8.282109135128132622762307548727, −7.75866819823711929078405531565, −7.52195641179090705481838590446, −7.02953864171686226132912444075, −6.52207133860112242905809928598, −5.89119935430835704372433845551, −5.79689757782884252790490275939, −5.11019922436989186607765222217, −5.01786645271672186444496826923, −4.29555929638007642409199067416, −4.03945007081128344518315577254, −3.69724288265100475036162569025, −3.41955156059658656429943430252, −2.66483754607630004393587062209, −2.20903851023028807854969532293, −1.23956327088675683827205019265, −0.944177348487544557330072115825, 0, 0,
0.944177348487544557330072115825, 1.23956327088675683827205019265, 2.20903851023028807854969532293, 2.66483754607630004393587062209, 3.41955156059658656429943430252, 3.69724288265100475036162569025, 4.03945007081128344518315577254, 4.29555929638007642409199067416, 5.01786645271672186444496826923, 5.11019922436989186607765222217, 5.79689757782884252790490275939, 5.89119935430835704372433845551, 6.52207133860112242905809928598, 7.02953864171686226132912444075, 7.52195641179090705481838590446, 7.75866819823711929078405531565, 8.282109135128132622762307548727, 8.313986404571865142652630448011