Properties

Label 4-2178e2-1.1-c2e2-0-1
Degree $4$
Conductor $4743684$
Sign $1$
Analytic cond. $3521.97$
Root an. cond. $7.70364$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 12·13-s + 4·16-s + 24·19-s + 32·25-s + 56·31-s − 4·37-s − 120·43-s − 98·49-s + 24·52-s − 48·61-s − 8·64-s − 160·67-s + 204·73-s − 48·76-s − 240·79-s + 64·97-s − 64·100-s − 56·103-s − 84·109-s − 112·124-s + 127-s + 131-s + 137-s + 139-s + 8·148-s + 149-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.923·13-s + 1/4·16-s + 1.26·19-s + 1.27·25-s + 1.80·31-s − 0.108·37-s − 2.79·43-s − 2·49-s + 6/13·52-s − 0.786·61-s − 1/8·64-s − 2.38·67-s + 2.79·73-s − 0.631·76-s − 3.03·79-s + 0.659·97-s − 0.639·100-s − 0.543·103-s − 0.770·109-s − 0.903·124-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 2/37·148-s + 0.00671·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4743684\)    =    \(2^{2} \cdot 3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(3521.97\)
Root analytic conductor: \(7.70364\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4743684,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7922603504\)
\(L(\frac12)\) \(\approx\) \(0.7922603504\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
11 \( 1 \)
good5$C_2^2$ \( 1 - 32 T^{2} + p^{4} T^{4} \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 560 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 12 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 770 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 + 496 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 28 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 2480 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 60 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 3266 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 4736 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 4370 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 24 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 80 T + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 - 102 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 120 T + p^{2} T^{2} )^{2} \)
83$C_2$ \( ( 1 - 158 T + p^{2} T^{2} )( 1 + 158 T + p^{2} T^{2} ) \)
89$C_2^2$ \( 1 + 6208 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.275291318356636801710762466684, −8.469658600833408357812293756765, −8.439432673383146404517714552109, −7.969170876125092629155926964637, −7.62581175633449385619332284287, −7.00630768452701734143043439560, −6.86846516334192370831511171547, −6.40254780919141205896275091584, −5.91049386813209562201852534295, −5.43825066581552374848075182436, −4.89206422396007923807569879850, −4.73934294781835678877885185086, −4.50433912531857859305848509611, −3.55998820675644067137365687511, −3.32379564512647523434736869776, −2.84630832809434632701961203915, −2.39270603868505092326614327401, −1.41267963165745768777209820675, −1.25097456145795971783794010288, −0.23474500242067484982669812839, 0.23474500242067484982669812839, 1.25097456145795971783794010288, 1.41267963165745768777209820675, 2.39270603868505092326614327401, 2.84630832809434632701961203915, 3.32379564512647523434736869776, 3.55998820675644067137365687511, 4.50433912531857859305848509611, 4.73934294781835678877885185086, 4.89206422396007923807569879850, 5.43825066581552374848075182436, 5.91049386813209562201852534295, 6.40254780919141205896275091584, 6.86846516334192370831511171547, 7.00630768452701734143043439560, 7.62581175633449385619332284287, 7.969170876125092629155926964637, 8.439432673383146404517714552109, 8.469658600833408357812293756765, 9.275291318356636801710762466684

Graph of the $Z$-function along the critical line