L(s) = 1 | + 4·3-s + 6·9-s + 4·11-s + 4·17-s + 4·19-s + 25-s − 4·27-s + 16·33-s + 4·41-s + 12·43-s − 14·49-s + 16·51-s + 16·57-s + 12·59-s − 4·73-s + 4·75-s − 37·81-s + 24·83-s − 12·89-s + 4·97-s + 24·99-s − 4·107-s + 4·113-s − 10·121-s + 16·123-s + 127-s + 48·129-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 2·9-s + 1.20·11-s + 0.970·17-s + 0.917·19-s + 1/5·25-s − 0.769·27-s + 2.78·33-s + 0.624·41-s + 1.82·43-s − 2·49-s + 2.24·51-s + 2.11·57-s + 1.56·59-s − 0.468·73-s + 0.461·75-s − 4.11·81-s + 2.63·83-s − 1.27·89-s + 0.406·97-s + 2.41·99-s − 0.386·107-s + 0.376·113-s − 0.909·121-s + 1.44·123-s + 0.0887·127-s + 4.22·129-s + ⋯ |
Λ(s)=(=(2163200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2163200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2163200
= 29⋅52⋅132
|
Sign: |
1
|
Analytic conductor: |
137.927 |
Root analytic conductor: |
3.42698 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2163200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
6.223874108 |
L(21) |
≈ |
6.223874108 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
| 13 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−2T+pT2)2 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−2T+pT2)2 |
| 43 | C2 | (1−6T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 59 | C2 | (1−6T+pT2)2 |
| 61 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 73 | C2 | (1+2T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.76319041513224922753287966748, −7.44095337164983387150060505996, −7.22602053082602449735325415510, −6.33588991532526860429499225622, −6.28727870819603758957301866812, −5.43479364046733402754835461064, −5.24172374409154567149889570954, −4.38796175153128331239805240266, −3.83609522350488929158971696987, −3.73594560911583979412114290925, −2.95784688889706959154847700703, −2.93871105322865322021254198939, −2.18201972761241363090254415749, −1.63546887865200897104772810976, −0.910977372178463170757222920731,
0.910977372178463170757222920731, 1.63546887865200897104772810976, 2.18201972761241363090254415749, 2.93871105322865322021254198939, 2.95784688889706959154847700703, 3.73594560911583979412114290925, 3.83609522350488929158971696987, 4.38796175153128331239805240266, 5.24172374409154567149889570954, 5.43479364046733402754835461064, 6.28727870819603758957301866812, 6.33588991532526860429499225622, 7.22602053082602449735325415510, 7.44095337164983387150060505996, 7.76319041513224922753287966748