L(s) = 1 | + 2-s + 4-s + 8-s − 6·11-s + 4·13-s + 16-s − 6·22-s − 12·23-s − 10·25-s + 4·26-s + 32-s − 8·37-s − 6·44-s − 12·46-s − 12·47-s − 10·49-s − 10·50-s + 4·52-s + 6·59-s + 16·61-s + 64-s − 24·71-s + 22·73-s − 8·74-s + 24·83-s − 6·88-s − 12·92-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.80·11-s + 1.10·13-s + 1/4·16-s − 1.27·22-s − 2.50·23-s − 2·25-s + 0.784·26-s + 0.176·32-s − 1.31·37-s − 0.904·44-s − 1.76·46-s − 1.75·47-s − 1.42·49-s − 1.41·50-s + 0.554·52-s + 0.781·59-s + 2.04·61-s + 1/8·64-s − 2.84·71-s + 2.57·73-s − 0.929·74-s + 2.63·83-s − 0.639·88-s − 1.25·92-s + ⋯ |
Λ(s)=(=(209952s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(209952s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
209952
= 25⋅38
|
Sign: |
−1
|
Analytic conductor: |
13.3867 |
Root analytic conductor: |
1.91279 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 209952, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1−T |
| 3 | | 1 |
good | 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 19 | C2 | (1−T+pT2)(1+T+pT2) |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+4T+pT2)2 |
| 41 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 43 | C2 | (1−T+pT2)(1+T+pT2) |
| 47 | C2 | (1+6T+pT2)2 |
| 53 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 59 | C2 | (1−3T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1−11T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−5T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.543319215757720981308384286559, −8.255589340941165804909076040404, −7.79453288119723697641112445352, −7.63671497466111343831458484773, −6.69953527334383655382904548898, −6.25936593777468405983226275094, −5.91234365712937538559209143490, −5.13805326110939411578475614907, −5.13777464868847606985261506723, −3.94847330019587176084970982031, −3.86098888246252906299834258338, −3.10746305536689930220572132603, −2.19879385611801234222671009191, −1.80773362483917328069437252787, 0,
1.80773362483917328069437252787, 2.19879385611801234222671009191, 3.10746305536689930220572132603, 3.86098888246252906299834258338, 3.94847330019587176084970982031, 5.13777464868847606985261506723, 5.13805326110939411578475614907, 5.91234365712937538559209143490, 6.25936593777468405983226275094, 6.69953527334383655382904548898, 7.63671497466111343831458484773, 7.79453288119723697641112445352, 8.255589340941165804909076040404, 8.543319215757720981308384286559