Properties

Label 4-200e2-1.1-c1e2-0-8
Degree $4$
Conductor $40000$
Sign $1$
Analytic cond. $2.55043$
Root an. cond. $1.26372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s + 8·19-s + 4·29-s + 8·31-s + 4·41-s + 6·49-s + 8·59-s − 4·61-s − 8·71-s + 16·79-s − 5·81-s − 20·89-s − 20·101-s + 4·109-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s − 16·171-s + 173-s + ⋯
L(s)  = 1  − 2/3·9-s + 1.83·19-s + 0.742·29-s + 1.43·31-s + 0.624·41-s + 6/7·49-s + 1.04·59-s − 0.512·61-s − 0.949·71-s + 1.80·79-s − 5/9·81-s − 2.11·89-s − 1.99·101-s + 0.383·109-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s − 1.22·171-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(40000\)    =    \(2^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2.55043\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 40000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.296909401\)
\(L(\frac12)\) \(\approx\) \(1.296909401\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 162 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06977626082370538471893428863, −9.898846866295529902863496427757, −9.251284189612968319728452392367, −8.702394021767180454782889130765, −8.220034691172912677696013631657, −7.67357568433452729615228524518, −7.12428399488025091432258795785, −6.51661267893497595570180523091, −5.84192025295842762081743703128, −5.37319968153162076020779348659, −4.71587371899737625900471590611, −3.95724007252243799902883907405, −3.08173126317146188392605748934, −2.56129487403855568897075165836, −1.11272791949399713419515070834, 1.11272791949399713419515070834, 2.56129487403855568897075165836, 3.08173126317146188392605748934, 3.95724007252243799902883907405, 4.71587371899737625900471590611, 5.37319968153162076020779348659, 5.84192025295842762081743703128, 6.51661267893497595570180523091, 7.12428399488025091432258795785, 7.67357568433452729615228524518, 8.220034691172912677696013631657, 8.702394021767180454782889130765, 9.251284189612968319728452392367, 9.898846866295529902863496427757, 10.06977626082370538471893428863

Graph of the $Z$-function along the critical line