L(s) = 1 | − 2.18e3·9-s − 2.92e4·13-s + 1.56e5·25-s − 5.59e5·37-s − 1.38e6·49-s + 7.07e6·61-s + 1.25e7·73-s + 4.78e6·81-s − 2.44e7·97-s − 3.36e7·109-s + 6.39e7·117-s − 3.89e7·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.15e8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | − 9-s − 3.68·13-s + 2·25-s − 1.81·37-s − 1.68·49-s + 3.98·61-s + 3.77·73-s + 81-s − 2.72·97-s − 2.48·109-s + 3.68·117-s − 2·121-s + 8.21·169-s + ⋯ |
Λ(s)=(=(36864s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(36864s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
36864
= 212⋅32
|
Sign: |
1
|
Analytic conductor: |
3597.35 |
Root analytic conductor: |
7.74454 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 36864, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
0.09217770622 |
L(21) |
≈ |
0.09217770622 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+p7T2 |
good | 5 | C2 | (1−p7T2)2 |
| 7 | C2 | (1−508T+p7T2)(1+508T+p7T2) |
| 11 | C2 | (1+p7T2)2 |
| 13 | C2 | (1+14614T+p7T2)2 |
| 17 | C2 | (1−p7T2)2 |
| 19 | C2 | (1−57448T+p7T2)(1+57448T+p7T2) |
| 23 | C2 | (1+p7T2)2 |
| 29 | C2 | (1−p7T2)2 |
| 31 | C2 | (1−178916T+p7T2)(1+178916T+p7T2) |
| 37 | C2 | (1+279710T+p7T2)2 |
| 41 | C2 | (1−p7T2)2 |
| 43 | C2 | (1−1035224T+p7T2)(1+1035224T+p7T2) |
| 47 | C2 | (1+p7T2)2 |
| 53 | C2 | (1−p7T2)2 |
| 59 | C2 | (1+p7T2)2 |
| 61 | C2 | (1−3535546T+p7T2)2 |
| 67 | C2 | (1−385072T+p7T2)(1+385072T+p7T2) |
| 71 | C2 | (1+p7T2)2 |
| 73 | C2 | (1−6274810T+p7T2)2 |
| 79 | C2 | (1−8763044T+p7T2)(1+8763044T+p7T2) |
| 83 | C2 | (1+p7T2)2 |
| 89 | C2 | (1−p7T2)2 |
| 97 | C2 | (1+12245198T+p7T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.06307291823413843129222722742, −10.98533914181917178306603362293, −10.52472014436010128017524532382, −9.830200720263015215291814085503, −9.659264011391398292781591133079, −9.117614824531049181911078640840, −8.331233678408138834740670717036, −8.101478860613731474127700911633, −7.31895045093175899519348238932, −6.73375637921156299919770392406, −6.73233544760550273040317385953, −5.31186854528034391930689751108, −5.16904429864291205140409461974, −4.91067308666795361561061468239, −3.88789405713229226942239345080, −3.09753818156138453747627976441, −2.41399973116681595484826347764, −2.28135334293542208660316386341, −1.02502713302394980122508437558, −0.083591046351202198967947105267,
0.083591046351202198967947105267, 1.02502713302394980122508437558, 2.28135334293542208660316386341, 2.41399973116681595484826347764, 3.09753818156138453747627976441, 3.88789405713229226942239345080, 4.91067308666795361561061468239, 5.16904429864291205140409461974, 5.31186854528034391930689751108, 6.73233544760550273040317385953, 6.73375637921156299919770392406, 7.31895045093175899519348238932, 8.101478860613731474127700911633, 8.331233678408138834740670717036, 9.117614824531049181911078640840, 9.659264011391398292781591133079, 9.830200720263015215291814085503, 10.52472014436010128017524532382, 10.98533914181917178306603362293, 12.06307291823413843129222722742