L(s) = 1 | − 12·5-s − 27·9-s + 172·13-s + 852·17-s − 1.14e3·25-s − 2.36e3·29-s + 860·37-s + 4.50e3·41-s + 324·45-s + 914·49-s + 3.20e3·53-s − 4.22e3·61-s − 2.06e3·65-s + 8.13e3·73-s + 729·81-s − 1.02e4·85-s − 4.09e3·89-s − 5.88e3·97-s + 2.33e4·101-s − 3.50e4·109-s + 2.40e4·113-s − 4.64e3·117-s − 5.71e3·121-s + 2.16e4·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.479·5-s − 1/3·9-s + 1.01·13-s + 2.94·17-s − 1.82·25-s − 2.81·29-s + 0.628·37-s + 2.67·41-s + 4/25·45-s + 0.380·49-s + 1.14·53-s − 1.13·61-s − 0.488·65-s + 1.52·73-s + 1/9·81-s − 1.41·85-s − 0.516·89-s − 0.625·97-s + 2.29·101-s − 2.95·109-s + 1.88·113-s − 0.339·117-s − 0.390·121-s + 1.38·125-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + ⋯ |
Λ(s)=(=(36864s/2ΓC(s)2L(s)Λ(5−s)
Λ(s)=(=(36864s/2ΓC(s+2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
36864
= 212⋅32
|
Sign: |
1
|
Analytic conductor: |
393.904 |
Root analytic conductor: |
4.45500 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 36864, ( :2,2), 1)
|
Particular Values
L(25) |
≈ |
2.256079341 |
L(21) |
≈ |
2.256079341 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+p3T2 |
good | 5 | C2 | (1+6T+p4T2)2 |
| 7 | C22 | 1−914T2+p8T4 |
| 11 | C22 | 1+5710T2+p8T4 |
| 13 | C2 | (1−86T+p4T2)2 |
| 17 | C2 | (1−426T+p4T2)2 |
| 19 | C22 | 1−256754T2+p8T4 |
| 23 | C22 | 1+190T2+p8T4 |
| 29 | C2 | (1+1182T+p4T2)2 |
| 31 | C22 | 1+582958T2+p8T4 |
| 37 | C2 | (1−430T+p4T2)2 |
| 41 | C2 | (1−2250T+p4T2)2 |
| 43 | C22 | 1+190p2T2+p8T4 |
| 47 | C22 | 1−9619394T2+p8T4 |
| 53 | C2 | (1−1602T+p4T2)2 |
| 59 | C22 | 1−11602610T2+p8T4 |
| 61 | C2 | (1+2114T+p4T2)2 |
| 67 | C22 | 1−38587634T2+p8T4 |
| 71 | C22 | 1−41865410T2+p8T4 |
| 73 | C2 | (1−4066T+p4T2)2 |
| 79 | C22 | 1−47103314T2+p8T4 |
| 83 | C22 | 1−10900850T2+p8T4 |
| 89 | C2 | (1+2046T+p4T2)2 |
| 97 | C2 | (1+2942T+p4T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03988071947171974455410682871, −11.69999369681912621665587196364, −10.99839995521059931415841775055, −10.91426823494330350015846874727, −10.05983995032866721134367769504, −9.452945944375264307741247581544, −9.407196776574690830858750515600, −8.480996090906597778643611105520, −7.80808189777775110640886760262, −7.71901308396404731537621710080, −7.23076540704023610713578176636, −6.08063625989352125452673947908, −5.62886533152600222385891439528, −5.62176299669672406973026601249, −4.34595465206099892134215743540, −3.63621772811811975782906290114, −3.48608396289622738793019560478, −2.35189459784699262891500270857, −1.38604910845612020864876934199, −0.58540537027730307109301864504,
0.58540537027730307109301864504, 1.38604910845612020864876934199, 2.35189459784699262891500270857, 3.48608396289622738793019560478, 3.63621772811811975782906290114, 4.34595465206099892134215743540, 5.62176299669672406973026601249, 5.62886533152600222385891439528, 6.08063625989352125452673947908, 7.23076540704023610713578176636, 7.71901308396404731537621710080, 7.80808189777775110640886760262, 8.480996090906597778643611105520, 9.407196776574690830858750515600, 9.452945944375264307741247581544, 10.05983995032866721134367769504, 10.91426823494330350015846874727, 10.99839995521059931415841775055, 11.69999369681912621665587196364, 12.03988071947171974455410682871