Properties

Label 4-192e2-1.1-c1e2-0-14
Degree $4$
Conductor $36864$
Sign $-1$
Analytic cond. $2.35048$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s − 12·13-s − 6·25-s + 4·37-s − 14·49-s + 20·61-s − 12·73-s + 9·81-s + 36·97-s − 12·109-s + 36·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 9-s − 3.32·13-s − 6/5·25-s + 0.657·37-s − 2·49-s + 2.56·61-s − 1.40·73-s + 81-s + 3.65·97-s − 1.14·109-s + 3.32·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(2.35048\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{36864} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 36864,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23383425889508895415100406682, −9.468761705895534248392912886381, −9.317356556158666156286958675354, −8.439450125780651634799093893382, −7.86574055998535746161422058704, −7.52766744709985624839545780760, −6.93944627141196287077129229697, −6.27282080646876620831649653268, −5.54216083419874931368270995905, −5.01452297596172644651029655270, −4.56897038264081606692544495668, −3.55808048734848453068190211023, −2.63895104553179739845027310173, −2.19360926670427462073525005533, 0, 2.19360926670427462073525005533, 2.63895104553179739845027310173, 3.55808048734848453068190211023, 4.56897038264081606692544495668, 5.01452297596172644651029655270, 5.54216083419874931368270995905, 6.27282080646876620831649653268, 6.93944627141196287077129229697, 7.52766744709985624839545780760, 7.86574055998535746161422058704, 8.439450125780651634799093893382, 9.317356556158666156286958675354, 9.468761705895534248392912886381, 10.23383425889508895415100406682

Graph of the $Z$-function along the critical line