| L(s) = 1 | − 3·9-s − 12·13-s − 6·25-s + 4·37-s − 14·49-s + 20·61-s − 12·73-s + 9·81-s + 36·97-s − 12·109-s + 36·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
| L(s) = 1 | − 9-s − 3.32·13-s − 6/5·25-s + 0.657·37-s − 2·49-s + 2.56·61-s − 1.40·73-s + 81-s + 3.65·97-s − 1.14·109-s + 3.32·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23383425889508895415100406682, −9.468761705895534248392912886381, −9.317356556158666156286958675354, −8.439450125780651634799093893382, −7.86574055998535746161422058704, −7.52766744709985624839545780760, −6.93944627141196287077129229697, −6.27282080646876620831649653268, −5.54216083419874931368270995905, −5.01452297596172644651029655270, −4.56897038264081606692544495668, −3.55808048734848453068190211023, −2.63895104553179739845027310173, −2.19360926670427462073525005533, 0,
2.19360926670427462073525005533, 2.63895104553179739845027310173, 3.55808048734848453068190211023, 4.56897038264081606692544495668, 5.01452297596172644651029655270, 5.54216083419874931368270995905, 6.27282080646876620831649653268, 6.93944627141196287077129229697, 7.52766744709985624839545780760, 7.86574055998535746161422058704, 8.439450125780651634799093893382, 9.317356556158666156286958675354, 9.468761705895534248392912886381, 10.23383425889508895415100406682