L(s) = 1 | + 6·2-s + 14·4-s + 6·5-s + 14·7-s + 36·10-s + 48·11-s + 52·13-s + 84·14-s − 84·16-s + 30·17-s + 64·19-s + 84·20-s + 288·22-s + 60·23-s − 175·25-s + 312·26-s + 196·28-s + 360·29-s − 140·31-s − 216·32-s + 180·34-s + 84·35-s − 230·37-s + 384·38-s + 234·41-s − 938·43-s + 672·44-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 7/4·4-s + 0.536·5-s + 0.755·7-s + 1.13·10-s + 1.31·11-s + 1.10·13-s + 1.60·14-s − 1.31·16-s + 0.428·17-s + 0.772·19-s + 0.939·20-s + 2.79·22-s + 0.543·23-s − 7/5·25-s + 2.35·26-s + 1.32·28-s + 2.30·29-s − 0.811·31-s − 1.19·32-s + 0.907·34-s + 0.405·35-s − 1.02·37-s + 1.63·38-s + 0.891·41-s − 3.32·43-s + 2.30·44-s + ⋯ |
Λ(s)=(=(35721s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(35721s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
35721
= 36⋅72
|
Sign: |
1
|
Analytic conductor: |
124.352 |
Root analytic conductor: |
3.33936 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 35721, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
9.376723892 |
L(21) |
≈ |
9.376723892 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C1 | (1−pT)2 |
good | 2 | D4 | 1−3pT+11pT2−3p4T3+p6T4 |
| 5 | D4 | 1−6T+211T2−6p3T3+p6T4 |
| 11 | D4 | 1−48T+2470T2−48p3T3+p6T4 |
| 13 | D4 | 1−4pT+3342T2−4p4T3+p6T4 |
| 17 | D4 | 1−30T+7699T2−30p3T3+p6T4 |
| 19 | D4 | 1−64T+3942T2−64p3T3+p6T4 |
| 23 | D4 | 1−60T+494pT2−60p3T3+p6T4 |
| 29 | D4 | 1−360T+77290T2−360p3T3+p6T4 |
| 31 | D4 | 1+140T+48930T2+140p3T3+p6T4 |
| 37 | D4 | 1+230T+98979T2+230p3T3+p6T4 |
| 41 | D4 | 1−234T+26683T2−234p3T3+p6T4 |
| 43 | D4 | 1+938T+378543T2+938p3T3+p6T4 |
| 47 | D4 | 1−618T+210199T2−618p3T3+p6T4 |
| 53 | D4 | 1+420T+64606T2+420p3T3+p6T4 |
| 59 | D4 | 1−282T+411439T2−282p3T3+p6T4 |
| 61 | D4 | 1+32T+205386T2+32p3T3+p6T4 |
| 67 | D4 | 1−544T+535542T2−544p3T3+p6T4 |
| 71 | D4 | 1+504T+736126T2+504p3T3+p6T4 |
| 73 | D4 | 1+764T+653958T2+764p3T3+p6T4 |
| 79 | D4 | 1−238T+125439T2−238p3T3+p6T4 |
| 83 | D4 | 1+522T+651823T2+522p3T3+p6T4 |
| 89 | D4 | 1−708T+1163542T2−708p3T3+p6T4 |
| 97 | D4 | 1−664T+1779618T2−664p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.27632987659299655646781178799, −12.11050418120095162927090243564, −11.53596273464521670832837473914, −11.38877843987926079005848866597, −10.39527046502980608642461348633, −10.11273323659505284049996330443, −9.265470538002553362706371216565, −8.883230783940692852695745409819, −8.342258761951479821104636953239, −7.64659685835112797103145769696, −6.73961172359149170084649142515, −6.44846109697459173396428217355, −5.62749816620686311188033767704, −5.51343900559437254962157215947, −4.66444943384070729710683771265, −4.30097411355325161304113297813, −3.48890578831053268065585151651, −3.22541706504688024702033440526, −1.92515513340998566052728157358, −1.10424273914690404018298632997,
1.10424273914690404018298632997, 1.92515513340998566052728157358, 3.22541706504688024702033440526, 3.48890578831053268065585151651, 4.30097411355325161304113297813, 4.66444943384070729710683771265, 5.51343900559437254962157215947, 5.62749816620686311188033767704, 6.44846109697459173396428217355, 6.73961172359149170084649142515, 7.64659685835112797103145769696, 8.342258761951479821104636953239, 8.883230783940692852695745409819, 9.265470538002553362706371216565, 10.11273323659505284049996330443, 10.39527046502980608642461348633, 11.38877843987926079005848866597, 11.53596273464521670832837473914, 12.11050418120095162927090243564, 12.27632987659299655646781178799