L(s) = 1 | − 12·5-s − 44·7-s + 52·11-s − 26·13-s + 20·17-s + 60·19-s − 8·23-s + 30·25-s − 132·29-s + 140·31-s + 528·35-s + 68·37-s − 28·41-s + 36·47-s + 938·49-s − 668·53-s − 624·55-s − 508·59-s + 340·61-s + 312·65-s + 940·67-s + 300·71-s + 1.12e3·73-s − 2.28e3·77-s + 1.52e3·79-s + 524·83-s − 240·85-s + ⋯ |
L(s) = 1 | − 1.07·5-s − 2.37·7-s + 1.42·11-s − 0.554·13-s + 0.285·17-s + 0.724·19-s − 0.0725·23-s + 6/25·25-s − 0.845·29-s + 0.811·31-s + 2.54·35-s + 0.302·37-s − 0.106·41-s + 0.111·47-s + 2.73·49-s − 1.73·53-s − 1.52·55-s − 1.12·59-s + 0.713·61-s + 0.595·65-s + 1.71·67-s + 0.501·71-s + 1.80·73-s − 3.38·77-s + 2.16·79-s + 0.692·83-s − 0.306·85-s + ⋯ |
Λ(s)=(=(3504384s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(3504384s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3504384
= 28⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
12199.5 |
Root analytic conductor: |
10.5095 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 3504384, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1+12T+114T2+12p3T3+p6T4 |
| 7 | D4 | 1+44T+998T2+44p3T3+p6T4 |
| 11 | C2 | (1−26T+p3T2)2 |
| 17 | D4 | 1−20T+9238T2−20p3T3+p6T4 |
| 19 | D4 | 1−60T+10318T2−60p3T3+p6T4 |
| 23 | D4 | 1+8T−418T2+8p3T3+p6T4 |
| 29 | D4 | 1+132T+28366T2+132p3T3+p6T4 |
| 31 | D4 | 1−140T+25782T2−140p3T3+p6T4 |
| 37 | D4 | 1−68T+68750T2−68p3T3+p6T4 |
| 41 | D4 | 1+28T+129610T2+28p3T3+p6T4 |
| 43 | C22 | 1+2914pT2+p6T4 |
| 47 | D4 | 1−36T+201778T2−36p3T3+p6T4 |
| 53 | D4 | 1+668T+406558T2+668p3T3+p6T4 |
| 59 | D4 | 1+508T+392026T2+508p3T3+p6T4 |
| 61 | D4 | 1−340T+471854T2−340p3T3+p6T4 |
| 67 | D4 | 1−940T+504398T2−940p3T3+p6T4 |
| 71 | D4 | 1−300T−57006T2−300p3T3+p6T4 |
| 73 | D4 | 1−1124T+1087686T2−1124p3T3+p6T4 |
| 79 | D4 | 1−1520T+1230686T2−1520p3T3+p6T4 |
| 83 | D4 | 1−524T+908810T2−524p3T3+p6T4 |
| 89 | D4 | 1+1900T+2312266T2+1900p3T3+p6T4 |
| 97 | D4 | 1+1436T+2285142T2+1436p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.659314656201227123907407454359, −8.281070193100072734471404005118, −7.78710342068889981386247026438, −7.58492111603631264122147637485, −6.84131486050085617790809602983, −6.77124169218390644567232598628, −6.42864839786140833994736941152, −6.09929419067110008098845112542, −5.35483764183193332685489887111, −5.16319157197850804973390641030, −4.31791768881848020165286053694, −3.99440462185048265865660132166, −3.55414415699425161581413133450, −3.40417562057635315385649364014, −2.78038519231245257871463135579, −2.35075911058161871325755520422, −1.36369030630018271198301901855, −0.884414296797356043782937990923, 0, 0,
0.884414296797356043782937990923, 1.36369030630018271198301901855, 2.35075911058161871325755520422, 2.78038519231245257871463135579, 3.40417562057635315385649364014, 3.55414415699425161581413133450, 3.99440462185048265865660132166, 4.31791768881848020165286053694, 5.16319157197850804973390641030, 5.35483764183193332685489887111, 6.09929419067110008098845112542, 6.42864839786140833994736941152, 6.77124169218390644567232598628, 6.84131486050085617790809602983, 7.58492111603631264122147637485, 7.78710342068889981386247026438, 8.281070193100072734471404005118, 8.659314656201227123907407454359