Properties

Label 4-1872e2-1.1-c3e2-0-2
Degree $4$
Conductor $3504384$
Sign $1$
Analytic cond. $12199.5$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s − 12·7-s + 44·11-s + 26·13-s − 56·17-s − 60·19-s + 168·23-s − 114·25-s − 216·29-s + 116·31-s + 96·35-s − 108·37-s − 464·41-s + 432·43-s + 308·47-s − 490·49-s − 416·53-s − 352·55-s + 148·59-s − 852·61-s − 208·65-s + 380·67-s − 860·71-s − 404·73-s − 528·77-s + 728·79-s − 1.09e3·83-s + ⋯
L(s)  = 1  − 0.715·5-s − 0.647·7-s + 1.20·11-s + 0.554·13-s − 0.798·17-s − 0.724·19-s + 1.52·23-s − 0.911·25-s − 1.38·29-s + 0.672·31-s + 0.463·35-s − 0.479·37-s − 1.76·41-s + 1.53·43-s + 0.955·47-s − 1.42·49-s − 1.07·53-s − 0.862·55-s + 0.326·59-s − 1.78·61-s − 0.396·65-s + 0.692·67-s − 1.43·71-s − 0.647·73-s − 0.781·77-s + 1.03·79-s − 1.44·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3504384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3504384 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3504384\)    =    \(2^{8} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(12199.5\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3504384,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.171168598\)
\(L(\frac12)\) \(\approx\) \(1.171168598\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 + 8 T + 178 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 12 T + 634 T^{2} + 12 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 4 p T + 86 p T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 56 T + 9202 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 60 T + 3970 T^{2} + 60 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 168 T + 18718 T^{2} - 168 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 216 T + 47770 T^{2} + 216 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 116 T + 24138 T^{2} - 116 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 108 T + 14110 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 464 T + 187354 T^{2} + 464 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 432 T + 163078 T^{2} - 432 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 308 T + 227050 T^{2} - 308 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 416 T + 340666 T^{2} + 416 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 148 T + 253522 T^{2} - 148 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 852 T + 465070 T^{2} + 852 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 380 T + 598818 T^{2} - 380 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 860 T + 845722 T^{2} + 860 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 404 T + 616086 T^{2} + 404 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 728 T + 307566 T^{2} - 728 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1092 T + 946690 T^{2} + 1092 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1792 T + 2197882 T^{2} - 1792 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 684 T + 1434022 T^{2} - 684 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.912648666238608395715275536248, −8.902921733716050199424111499459, −8.281073546339059322219168207294, −7.958628741693447049171440367269, −7.39157479292450407604174587854, −7.12739095616712879146210117513, −6.63320909834483675107415026896, −6.42627984549524220529400092021, −5.89232823700541636274441888206, −5.63862862452443894890860570511, −4.74149378628280901363420889326, −4.62262067871413703320465491538, −4.03833329328810967555860041410, −3.68626123522913615522156940459, −3.22418992306099529151945928712, −2.88293077683429334838876597402, −1.88231142312022988005247909335, −1.74138147313860836409829207790, −0.874831035983803976234536379550, −0.27445774622771076669377282560, 0.27445774622771076669377282560, 0.874831035983803976234536379550, 1.74138147313860836409829207790, 1.88231142312022988005247909335, 2.88293077683429334838876597402, 3.22418992306099529151945928712, 3.68626123522913615522156940459, 4.03833329328810967555860041410, 4.62262067871413703320465491538, 4.74149378628280901363420889326, 5.63862862452443894890860570511, 5.89232823700541636274441888206, 6.42627984549524220529400092021, 6.63320909834483675107415026896, 7.12739095616712879146210117513, 7.39157479292450407604174587854, 7.958628741693447049171440367269, 8.281073546339059322219168207294, 8.902921733716050199424111499459, 8.912648666238608395715275536248

Graph of the $Z$-function along the critical line