Properties

Label 4-1872e2-1.1-c3e2-0-12
Degree $4$
Conductor $3504384$
Sign $1$
Analytic cond. $12199.5$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 25·7-s − 56·11-s − 26·13-s + 13·17-s + 124·19-s − 172·23-s − 79·25-s − 196·29-s + 78·31-s + 75·35-s + 161·37-s − 234·41-s − 135·43-s − 237·47-s − 199·49-s − 666·53-s − 168·55-s + 136·59-s − 146·61-s − 78·65-s + 4·67-s − 563·71-s − 1.48e3·73-s − 1.40e3·77-s + 896·79-s + 1.90e3·83-s + ⋯
L(s)  = 1  + 0.268·5-s + 1.34·7-s − 1.53·11-s − 0.554·13-s + 0.185·17-s + 1.49·19-s − 1.55·23-s − 0.631·25-s − 1.25·29-s + 0.451·31-s + 0.362·35-s + 0.715·37-s − 0.891·41-s − 0.478·43-s − 0.735·47-s − 0.580·49-s − 1.72·53-s − 0.411·55-s + 0.300·59-s − 0.306·61-s − 0.148·65-s + 0.00729·67-s − 0.941·71-s − 2.37·73-s − 2.07·77-s + 1.27·79-s + 2.51·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3504384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3504384 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3504384\)    =    \(2^{8} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(12199.5\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3504384,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_1$ \( ( 1 + p T )^{2} \)
good5$D_{4}$ \( 1 - 3 T + 88 T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 25 T + 824 T^{2} - 25 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 56 T + 3154 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 13 T + 3280 T^{2} - 13 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 124 T + 16394 T^{2} - 124 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 172 T + 29102 T^{2} + 172 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 196 T + 53710 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 78 T + 40006 T^{2} - 78 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 161 T + 35352 T^{2} - 161 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 234 T + 40498 T^{2} + 234 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 135 T + 12442 T^{2} + 135 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 237 T + 221232 T^{2} + 237 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 666 T + 406818 T^{2} + 666 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 136 T + 57682 T^{2} - 136 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 146 T + 457466 T^{2} + 146 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 526778 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 563 T + 787016 T^{2} + 563 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1480 T + 1311326 T^{2} + 1480 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 896 T + 1176270 T^{2} - 896 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1902 T + 2047318 T^{2} - 1902 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 272 T + 341902 T^{2} - 272 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 2160 T + 2346718 T^{2} + 2160 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.476366516958382200284847045201, −8.087206963869121225972023405635, −7.81400889849141200233362729284, −7.80396932831637635643053594073, −7.27464702160173075250566866600, −6.76002197705200091642272714307, −6.07819600951342864751100577777, −5.89098509069072670520825994337, −5.23525270373015295894163574208, −5.17570063661038346643307938355, −4.63057170273788552177578929989, −4.34993087928316839902733867080, −3.41301174525124605933704612794, −3.31419484384400358142584548014, −2.54465950286801289453674405269, −2.05741504857799731794972447230, −1.67385491069682334192302001204, −1.13141958712475277380742238075, 0, 0, 1.13141958712475277380742238075, 1.67385491069682334192302001204, 2.05741504857799731794972447230, 2.54465950286801289453674405269, 3.31419484384400358142584548014, 3.41301174525124605933704612794, 4.34993087928316839902733867080, 4.63057170273788552177578929989, 5.17570063661038346643307938355, 5.23525270373015295894163574208, 5.89098509069072670520825994337, 6.07819600951342864751100577777, 6.76002197705200091642272714307, 7.27464702160173075250566866600, 7.80396932831637635643053594073, 7.81400889849141200233362729284, 8.087206963869121225972023405635, 8.476366516958382200284847045201

Graph of the $Z$-function along the critical line