L(s) = 1 | − 6·9-s − 2·11-s − 8·17-s + 25-s + 12·41-s − 4·43-s − 10·49-s − 24·59-s + 24·67-s + 8·73-s + 27·81-s − 4·83-s + 12·89-s − 4·97-s + 12·99-s + 12·107-s + 28·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 2·9-s − 0.603·11-s − 1.94·17-s + 1/5·25-s + 1.87·41-s − 0.609·43-s − 1.42·49-s − 3.12·59-s + 2.93·67-s + 0.936·73-s + 3·81-s − 0.439·83-s + 1.27·89-s − 0.406·97-s + 1.20·99-s + 1.16·107-s + 2.63·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.88·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(3097600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(3097600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
3097600
= 210⋅52⋅112
|
Sign: |
−1
|
Analytic conductor: |
197.505 |
Root analytic conductor: |
3.74882 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 3097600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
| 11 | C1 | (1+T)2 |
good | 3 | C2 | (1+pT2)2 |
| 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1+4T+pT2)2 |
| 19 | C2 | (1+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1+2T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+12T+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−12T+pT2)2 |
| 71 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 73 | C2 | (1−4T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C2 | (1+2T+pT2)2 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.36247134612527590927307037370, −6.85667269899173093324578324851, −6.30961469790096626723393594297, −6.21087114261569312686272580596, −5.72971066068134741309412572095, −5.17000472187588479255187728599, −4.83284777784030043470160695571, −4.45821261643777188910209572887, −3.79836956390090775269445181604, −3.12595338350487188300141328594, −2.96374376382014471097320958505, −2.17666388867997363005053217178, −2.03399759604601396643465282622, −0.71531896275518796286339281459, 0,
0.71531896275518796286339281459, 2.03399759604601396643465282622, 2.17666388867997363005053217178, 2.96374376382014471097320958505, 3.12595338350487188300141328594, 3.79836956390090775269445181604, 4.45821261643777188910209572887, 4.83284777784030043470160695571, 5.17000472187588479255187728599, 5.72971066068134741309412572095, 6.21087114261569312686272580596, 6.30961469790096626723393594297, 6.85667269899173093324578324851, 7.36247134612527590927307037370