Properties

Label 4-1760e2-1.1-c1e2-0-14
Degree $4$
Conductor $3097600$
Sign $-1$
Analytic cond. $197.505$
Root an. cond. $3.74882$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 2·11-s − 8·17-s + 25-s + 12·41-s − 4·43-s − 10·49-s − 24·59-s + 24·67-s + 8·73-s + 27·81-s − 4·83-s + 12·89-s − 4·97-s + 12·99-s + 12·107-s + 28·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 48·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 2·9-s − 0.603·11-s − 1.94·17-s + 1/5·25-s + 1.87·41-s − 0.609·43-s − 1.42·49-s − 3.12·59-s + 2.93·67-s + 0.936·73-s + 3·81-s − 0.439·83-s + 1.27·89-s − 0.406·97-s + 1.20·99-s + 1.16·107-s + 2.63·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 3.88·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3097600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3097600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3097600\)    =    \(2^{10} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(197.505\)
Root analytic conductor: \(3.74882\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 3097600,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
11$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36247134612527590927307037370, −6.85667269899173093324578324851, −6.30961469790096626723393594297, −6.21087114261569312686272580596, −5.72971066068134741309412572095, −5.17000472187588479255187728599, −4.83284777784030043470160695571, −4.45821261643777188910209572887, −3.79836956390090775269445181604, −3.12595338350487188300141328594, −2.96374376382014471097320958505, −2.17666388867997363005053217178, −2.03399759604601396643465282622, −0.71531896275518796286339281459, 0, 0.71531896275518796286339281459, 2.03399759604601396643465282622, 2.17666388867997363005053217178, 2.96374376382014471097320958505, 3.12595338350487188300141328594, 3.79836956390090775269445181604, 4.45821261643777188910209572887, 4.83284777784030043470160695571, 5.17000472187588479255187728599, 5.72971066068134741309412572095, 6.21087114261569312686272580596, 6.30961469790096626723393594297, 6.85667269899173093324578324851, 7.36247134612527590927307037370

Graph of the $Z$-function along the critical line