L(s) = 1 | + 24·2-s + 174·3-s − 584·4-s + 4.17e3·6-s − 4.80e3·7-s − 2.95e4·8-s + 6.66e3·9-s + 1.85e4·11-s − 1.01e5·12-s + 5.10e4·13-s − 1.15e5·14-s + 576·16-s + 3.73e5·17-s + 1.60e5·18-s − 1.43e5·19-s − 8.35e5·21-s + 4.45e5·22-s + 4.98e5·23-s − 5.14e6·24-s + 1.22e6·26-s + 4.77e5·27-s + 2.80e6·28-s − 1.15e7·29-s − 3.95e6·31-s + 2.08e7·32-s + 3.23e6·33-s + 8.97e6·34-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 1.24·3-s − 1.14·4-s + 1.31·6-s − 0.755·7-s − 2.55·8-s + 0.338·9-s + 0.382·11-s − 1.41·12-s + 0.496·13-s − 0.801·14-s + 0.00219·16-s + 1.08·17-s + 0.359·18-s − 0.252·19-s − 0.937·21-s + 0.405·22-s + 0.371·23-s − 3.16·24-s + 0.526·26-s + 0.172·27-s + 0.862·28-s − 3.03·29-s − 0.768·31-s + 3.51·32-s + 0.474·33-s + 1.15·34-s + ⋯ |
Λ(s)=(=(30625s/2ΓC(s)2L(s)Λ(10−s)
Λ(s)=(=(30625s/2ΓC(s+9/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
30625
= 54⋅72
|
Sign: |
1
|
Analytic conductor: |
8123.64 |
Root analytic conductor: |
9.49374 |
Motivic weight: |
9 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 30625, ( :9/2,9/2), 1)
|
Particular Values
L(5) |
= |
0 |
L(21) |
= |
0 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 5 | | 1 |
| 7 | C1 | (1+p4T)2 |
good | 2 | D4 | 1−3p3T+145p3T2−3p12T3+p18T4 |
| 3 | D4 | 1−58pT+2623p2T2−58p10T3+p18T4 |
| 11 | D4 | 1−18566T+4136090463T2−18566p9T3+p18T4 |
| 13 | D4 | 1−3930pT+19172461323T2−3930p10T3+p18T4 |
| 17 | D4 | 1−373910T+270283008251T2−373910p9T3+p18T4 |
| 19 | D4 | 1+143276T+642750798250T2+143276p9T3+p18T4 |
| 23 | D4 | 1−498908T−1733603053870T2−498908p9T3+p18T4 |
| 29 | D4 | 1+399226pT+61819642147595T2+399226p10T3+p18T4 |
| 31 | D4 | 1+3953760T+18380996896542T2+3953760p9T3+p18T4 |
| 37 | D4 | 1−3205412T+134679597433390T2−3205412p9T3+p18T4 |
| 41 | D4 | 1−1058992T−202350146478094T2−1058992p9T3+p18T4 |
| 43 | D4 | 1+15948180T+312060834724314T2+15948180p9T3+p18T4 |
| 47 | D4 | 1+65501290T+2591944660543287T2+65501290p9T3+p18T4 |
| 53 | D4 | 1−25114688T+6536128371514410T2−25114688p9T3+p18T4 |
| 59 | D4 | 1+116159208T+8473255943386694T2+116159208p9T3+p18T4 |
| 61 | D4 | 1+44688544T+21891928402164378T2+44688544p9T3+p18T4 |
| 67 | D4 | 1+118092496T+11543378662237830T2+118092496p9T3+p18T4 |
| 71 | D4 | 1+294165824T+66419314231297806T2+294165824p9T3+p18T4 |
| 73 | D4 | 1−57419332T+116103868936695574T2−57419332p9T3+p18T4 |
| 79 | D4 | 1+692852854T+353229306838520119T2+692852854p9T3+p18T4 |
| 83 | D4 | 1−6514216pT+378894185867322102T2−6514216p10T3+p18T4 |
| 89 | D4 | 1+779043704T+776620283810146850T2+779043704p9T3+p18T4 |
| 97 | D4 | 1−2673039406T+3290052660205451443T2−2673039406p9T3+p18T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72332263277543635520212718063, −10.04503603989193165192675669081, −9.516681435355276758194566916491, −9.248424858875174770972139314890, −8.854443681950545430007021630017, −8.439618704201658616730309079442, −7.78180129729300399453928843940, −7.31599339660262361090232450626, −6.29753536532339788144506532357, −5.95557579400063811242387947680, −5.36274064545844210088903213003, −4.84506123048857842154839867913, −3.98796071192884477735336646048, −3.75261804553506790169688313550, −3.09407160313781715151718558873, −3.05288156102244809378056457542, −1.86255070794891609193750177491, −1.13743857261380907854333089593, 0, 0,
1.13743857261380907854333089593, 1.86255070794891609193750177491, 3.05288156102244809378056457542, 3.09407160313781715151718558873, 3.75261804553506790169688313550, 3.98796071192884477735336646048, 4.84506123048857842154839867913, 5.36274064545844210088903213003, 5.95557579400063811242387947680, 6.29753536532339788144506532357, 7.31599339660262361090232450626, 7.78180129729300399453928843940, 8.439618704201658616730309079442, 8.854443681950545430007021630017, 9.248424858875174770972139314890, 9.516681435355276758194566916491, 10.04503603989193165192675669081, 10.72332263277543635520212718063