Properties

Label 4-175e2-1.1-c9e2-0-1
Degree $4$
Conductor $30625$
Sign $1$
Analytic cond. $8123.64$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s + 86·3-s − 804·4-s + 516·6-s + 4.80e3·7-s − 6.79e3·8-s − 1.04e4·9-s + 3.53e4·11-s − 6.91e4·12-s + 2.65e4·13-s + 2.88e4·14-s + 3.90e5·16-s + 4.63e5·17-s − 6.27e4·18-s − 9.25e5·19-s + 4.12e5·21-s + 2.11e5·22-s − 7.78e5·23-s − 5.84e5·24-s + 1.59e5·26-s − 7.43e5·27-s − 3.86e6·28-s − 1.00e7·29-s + 2.46e6·31-s + 4.00e6·32-s + 3.03e6·33-s + 2.78e6·34-s + ⋯
L(s)  = 1  + 0.265·2-s + 0.612·3-s − 1.57·4-s + 0.162·6-s + 0.755·7-s − 0.586·8-s − 0.531·9-s + 0.727·11-s − 0.962·12-s + 0.257·13-s + 0.200·14-s + 1.49·16-s + 1.34·17-s − 0.140·18-s − 1.62·19-s + 0.463·21-s + 0.192·22-s − 0.579·23-s − 0.359·24-s + 0.0683·26-s − 0.269·27-s − 1.18·28-s − 2.62·29-s + 0.479·31-s + 0.675·32-s + 0.445·33-s + 0.357·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30625 ^{s/2} \, \Gamma_{\C}(s+9/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(30625\)    =    \(5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(8123.64\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 30625,\ (\ :9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.870975765\)
\(L(\frac12)\) \(\approx\) \(1.870975765\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_1$ \( ( 1 - p^{4} T )^{2} \)
good2$D_{4}$ \( 1 - 3 p T + 105 p^{3} T^{2} - 3 p^{10} T^{3} + p^{18} T^{4} \)
3$D_{4}$ \( 1 - 86 T + 5954 p T^{2} - 86 p^{9} T^{3} + p^{18} T^{4} \)
11$D_{4}$ \( 1 - 35316 T + 2892681078 T^{2} - 35316 p^{9} T^{3} + p^{18} T^{4} \)
13$D_{4}$ \( 1 - 26530 T - 1541163822 T^{2} - 26530 p^{9} T^{3} + p^{18} T^{4} \)
17$D_{4}$ \( 1 - 463920 T + 273833245726 T^{2} - 463920 p^{9} T^{3} + p^{18} T^{4} \)
19$D_{4}$ \( 1 + 925426 T + 858791487510 T^{2} + 925426 p^{9} T^{3} + p^{18} T^{4} \)
23$D_{4}$ \( 1 + 778128 T + 3473691840430 T^{2} + 778128 p^{9} T^{3} + p^{18} T^{4} \)
29$D_{4}$ \( 1 + 10003584 T + 52302031706070 T^{2} + 10003584 p^{9} T^{3} + p^{18} T^{4} \)
31$D_{4}$ \( 1 - 2467260 T + 49371575832542 T^{2} - 2467260 p^{9} T^{3} + p^{18} T^{4} \)
37$D_{4}$ \( 1 + 30735552 T + 484209298874630 T^{2} + 30735552 p^{9} T^{3} + p^{18} T^{4} \)
41$D_{4}$ \( 1 + 19103448 T + 602984827739166 T^{2} + 19103448 p^{9} T^{3} + p^{18} T^{4} \)
43$D_{4}$ \( 1 + 4065100 T + 797231337676374 T^{2} + 4065100 p^{9} T^{3} + p^{18} T^{4} \)
47$D_{4}$ \( 1 - 82195020 T + 3721245520696702 T^{2} - 82195020 p^{9} T^{3} + p^{18} T^{4} \)
53$D_{4}$ \( 1 - 55189812 T + 3123778356606670 T^{2} - 55189812 p^{9} T^{3} + p^{18} T^{4} \)
59$D_{4}$ \( 1 + 7069218 T + 16866494212382134 T^{2} + 7069218 p^{9} T^{3} + p^{18} T^{4} \)
61$D_{4}$ \( 1 - 44316386 T + 21654336818123658 T^{2} - 44316386 p^{9} T^{3} + p^{18} T^{4} \)
67$D_{4}$ \( 1 - 241921336 T + 59516583718815510 T^{2} - 241921336 p^{9} T^{3} + p^{18} T^{4} \)
71$D_{4}$ \( 1 - 206493816 T + 58491352612128526 T^{2} - 206493816 p^{9} T^{3} + p^{18} T^{4} \)
73$D_{4}$ \( 1 - 499153188 T + 178474458263805254 T^{2} - 499153188 p^{9} T^{3} + p^{18} T^{4} \)
79$D_{4}$ \( 1 - 5930824 p T + 239633073722978334 T^{2} - 5930824 p^{10} T^{3} + p^{18} T^{4} \)
83$D_{4}$ \( 1 + 444023958 T + 333438010641681622 T^{2} + 444023958 p^{9} T^{3} + p^{18} T^{4} \)
89$D_{4}$ \( 1 - 636267396 T + 801539802340191990 T^{2} - 636267396 p^{9} T^{3} + p^{18} T^{4} \)
97$D_{4}$ \( 1 - 1632716064 T + 2180562419544849758 T^{2} - 1632716064 p^{9} T^{3} + p^{18} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.24736840267355414168373815103, −10.73513528579450487671986428164, −10.19767358347092717573159112406, −9.681064071062166126534867535311, −9.053738390617711546116856195206, −8.736858325823682805074417413058, −8.467463836465438712973521192822, −7.920675264502913579887568848730, −7.34633947525959988117123588851, −6.57245112476261471319148351636, −5.81019747511315724849956059286, −5.32453252970888275250377022748, −5.00044365436248585046422647362, −4.08115409205300848253758962368, −3.60850188643369384816150837197, −3.59541895133901368702273437857, −2.24912981254981469504134128471, −1.86943577280585272761878224638, −0.954087512157474385978369047606, −0.34002778790331420961708499884, 0.34002778790331420961708499884, 0.954087512157474385978369047606, 1.86943577280585272761878224638, 2.24912981254981469504134128471, 3.59541895133901368702273437857, 3.60850188643369384816150837197, 4.08115409205300848253758962368, 5.00044365436248585046422647362, 5.32453252970888275250377022748, 5.81019747511315724849956059286, 6.57245112476261471319148351636, 7.34633947525959988117123588851, 7.920675264502913579887568848730, 8.467463836465438712973521192822, 8.736858325823682805074417413058, 9.053738390617711546116856195206, 9.681064071062166126534867535311, 10.19767358347092717573159112406, 10.73513528579450487671986428164, 11.24736840267355414168373815103

Graph of the $Z$-function along the critical line