L(s) = 1 | − 2·2-s + 3·4-s + 4·5-s − 4·8-s − 9-s − 8·10-s + 5·16-s + 2·18-s + 12·20-s + 2·25-s + 4·31-s − 6·32-s − 3·36-s + 12·37-s − 16·40-s − 8·41-s + 8·43-s − 4·45-s − 49-s − 4·50-s − 12·59-s − 16·61-s − 8·62-s + 7·64-s + 4·72-s + 20·73-s − 24·74-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 1.78·5-s − 1.41·8-s − 1/3·9-s − 2.52·10-s + 5/4·16-s + 0.471·18-s + 2.68·20-s + 2/5·25-s + 0.718·31-s − 1.06·32-s − 1/2·36-s + 1.97·37-s − 2.52·40-s − 1.24·41-s + 1.21·43-s − 0.596·45-s − 1/7·49-s − 0.565·50-s − 1.56·59-s − 2.04·61-s − 1.01·62-s + 7/8·64-s + 0.471·72-s + 2.34·73-s − 2.78·74-s + ⋯ |
Λ(s)=(=(2965284s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2965284s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2965284
= 22⋅32⋅72⋅412
|
Sign: |
1
|
Analytic conductor: |
189.069 |
Root analytic conductor: |
3.70813 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2965284, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.537084925 |
L(21) |
≈ |
1.537084925 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | C2 | 1+T2 |
| 7 | C2 | 1+T2 |
| 41 | C2 | 1+8T+pT2 |
good | 5 | C2 | (1−2T+pT2)2 |
| 11 | C22 | 1−6T2+p2T4 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C22 | 1−78T2+p2T4 |
| 53 | C22 | 1−42T2+p2T4 |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | C2 | (1+8T+pT2)2 |
| 67 | C22 | 1−130T2+p2T4 |
| 71 | C22 | 1−106T2+p2T4 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C22 | 1−142T2+p2T4 |
| 83 | C2 | (1+10T+pT2)2 |
| 89 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 97 | C22 | 1+2T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.608451289161798004818796404023, −9.264229158285421089095512436177, −8.662281026403992661469811046765, −8.644267008605309030013551729096, −7.81334148258004356158541186665, −7.80971384126690279828508104523, −7.25540427100577117569940722156, −6.71340955734571335601981998644, −6.17071680719276140727220091349, −6.12126332920449288911997929306, −5.76133762770865021089612281801, −5.23546132688697419879236468340, −4.61269392386010833313536331308, −4.17109034182542498846162728644, −3.11086484128558782310879360728, −3.06108901736996037579990096682, −2.12002710720056025871149247640, −2.06626781132466217519800232724, −1.35275979495854795980036423769, −0.60301879878664495448848779196,
0.60301879878664495448848779196, 1.35275979495854795980036423769, 2.06626781132466217519800232724, 2.12002710720056025871149247640, 3.06108901736996037579990096682, 3.11086484128558782310879360728, 4.17109034182542498846162728644, 4.61269392386010833313536331308, 5.23546132688697419879236468340, 5.76133762770865021089612281801, 6.12126332920449288911997929306, 6.17071680719276140727220091349, 6.71340955734571335601981998644, 7.25540427100577117569940722156, 7.80971384126690279828508104523, 7.81334148258004356158541186665, 8.644267008605309030013551729096, 8.662281026403992661469811046765, 9.264229158285421089095512436177, 9.608451289161798004818796404023