Properties

Label 4-162e2-1.1-c7e2-0-3
Degree $4$
Conductor $26244$
Sign $1$
Analytic cond. $2561.00$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 165·5-s + 508·7-s − 512·8-s − 1.32e3·10-s + 3.02e3·11-s − 5.03e3·13-s + 4.06e3·14-s − 4.09e3·16-s + 6.37e3·17-s + 3.01e3·19-s + 2.41e4·22-s − 7.56e4·23-s + 7.81e4·25-s − 4.03e4·26-s − 8.26e4·29-s + 1.74e5·31-s + 5.10e4·34-s − 8.38e4·35-s − 6.47e5·37-s + 2.41e4·38-s + 8.44e4·40-s − 3.08e5·41-s − 3.36e5·43-s − 6.04e5·46-s − 3.83e5·47-s + 8.23e5·49-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.590·5-s + 0.559·7-s − 0.353·8-s − 0.417·10-s + 0.685·11-s − 0.636·13-s + 0.395·14-s − 1/4·16-s + 0.314·17-s + 0.100·19-s + 0.484·22-s − 1.29·23-s + 25-s − 0.449·26-s − 0.629·29-s + 1.05·31-s + 0.222·34-s − 0.330·35-s − 2.10·37-s + 0.0713·38-s + 0.208·40-s − 0.698·41-s − 0.645·43-s − 0.916·46-s − 0.538·47-s + 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26244\)    =    \(2^{2} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2561.00\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26244,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.195850849\)
\(L(\frac12)\) \(\approx\) \(1.195850849\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{3} T + p^{6} T^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 33 p T - 2036 p^{2} T^{2} + 33 p^{8} T^{3} + p^{14} T^{4} \)
7$C_2$ \( ( 1 - 1763 T + p^{7} T^{2} )( 1 + 1255 T + p^{7} T^{2} ) \)
11$C_2^2$ \( 1 - 3024 T - 10342595 T^{2} - 3024 p^{7} T^{3} + p^{14} T^{4} \)
13$C_2^2$ \( 1 + 5039 T - 37356996 T^{2} + 5039 p^{7} T^{3} + p^{14} T^{4} \)
17$C_2$ \( ( 1 - 3189 T + p^{7} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 1508 T + p^{7} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 75600 T + 2310534553 T^{2} + 75600 p^{7} T^{3} + p^{14} T^{4} \)
29$C_2^2$ \( 1 + 82665 T - 10416374084 T^{2} + 82665 p^{7} T^{3} + p^{14} T^{4} \)
31$C_2^2$ \( 1 - 174892 T + 3074597553 T^{2} - 174892 p^{7} T^{3} + p^{14} T^{4} \)
37$C_2$ \( ( 1 + 323569 T + p^{7} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 308118 T - 99817571957 T^{2} + 308118 p^{7} T^{3} + p^{14} T^{4} \)
43$C_2^2$ \( 1 + 336680 T - 158465188707 T^{2} + 336680 p^{7} T^{3} + p^{14} T^{4} \)
47$C_2^2$ \( 1 + 383196 T - 359783946047 T^{2} + 383196 p^{7} T^{3} + p^{14} T^{4} \)
53$C_2$ \( ( 1 + 760206 T + p^{7} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 2225664 T + 2464928756077 T^{2} + 2225664 p^{7} T^{3} + p^{14} T^{4} \)
61$C_2^2$ \( 1 + 2244815 T + 1896451548204 T^{2} + 2244815 p^{7} T^{3} + p^{14} T^{4} \)
67$C_2^2$ \( 1 + 1473188 T - 3890428721979 T^{2} + 1473188 p^{7} T^{3} + p^{14} T^{4} \)
71$C_2$ \( ( 1 - 5006892 T + p^{7} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 5898301 T + p^{7} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 7028768 T + 30199670611665 T^{2} + 7028768 p^{7} T^{3} + p^{14} T^{4} \)
83$C_2^2$ \( 1 + 2651196 T - 20107210759211 T^{2} + 2651196 p^{7} T^{3} + p^{14} T^{4} \)
89$C_2$ \( ( 1 - 6770901 T + p^{7} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 16176386 T + 180877179542883 T^{2} + 16176386 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03719472501806546594764978369, −11.49773930708098193623026249306, −10.93820172749231544170830503072, −10.19578830033338212369629005631, −10.02156404243106517775191882813, −9.007174433624170436474232443470, −8.892118997898237631337935538337, −7.991495633654315643108948712125, −7.78593507555900304019491927372, −6.96327138131373984480491156613, −6.54307534890021345054734628436, −5.80945513924447681515046601577, −5.18812855186794106330884525122, −4.61741762966938221303184905023, −4.20613829575332397818940125706, −3.41020324991272017036920459122, −2.98527733613566380975822936027, −1.89341792425272311339430149905, −1.37365187520319000128052991652, −0.25687553343924753765171036965, 0.25687553343924753765171036965, 1.37365187520319000128052991652, 1.89341792425272311339430149905, 2.98527733613566380975822936027, 3.41020324991272017036920459122, 4.20613829575332397818940125706, 4.61741762966938221303184905023, 5.18812855186794106330884525122, 5.80945513924447681515046601577, 6.54307534890021345054734628436, 6.96327138131373984480491156613, 7.78593507555900304019491927372, 7.991495633654315643108948712125, 8.892118997898237631337935538337, 9.007174433624170436474232443470, 10.02156404243106517775191882813, 10.19578830033338212369629005631, 10.93820172749231544170830503072, 11.49773930708098193623026249306, 12.03719472501806546594764978369

Graph of the $Z$-function along the critical line