L(s) = 1 | + 8·2-s − 165·5-s + 508·7-s − 512·8-s − 1.32e3·10-s + 3.02e3·11-s − 5.03e3·13-s + 4.06e3·14-s − 4.09e3·16-s + 6.37e3·17-s + 3.01e3·19-s + 2.41e4·22-s − 7.56e4·23-s + 7.81e4·25-s − 4.03e4·26-s − 8.26e4·29-s + 1.74e5·31-s + 5.10e4·34-s − 8.38e4·35-s − 6.47e5·37-s + 2.41e4·38-s + 8.44e4·40-s − 3.08e5·41-s − 3.36e5·43-s − 6.04e5·46-s − 3.83e5·47-s + 8.23e5·49-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.590·5-s + 0.559·7-s − 0.353·8-s − 0.417·10-s + 0.685·11-s − 0.636·13-s + 0.395·14-s − 1/4·16-s + 0.314·17-s + 0.100·19-s + 0.484·22-s − 1.29·23-s + 25-s − 0.449·26-s − 0.629·29-s + 1.05·31-s + 0.222·34-s − 0.330·35-s − 2.10·37-s + 0.0713·38-s + 0.208·40-s − 0.698·41-s − 0.645·43-s − 0.916·46-s − 0.538·47-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.195850849\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.195850849\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 - p^{3} T + p^{6} T^{2} \) |
| 3 | | \( 1 \) |
good | 5 | $C_2^2$ | \( 1 + 33 p T - 2036 p^{2} T^{2} + 33 p^{8} T^{3} + p^{14} T^{4} \) |
| 7 | $C_2$ | \( ( 1 - 1763 T + p^{7} T^{2} )( 1 + 1255 T + p^{7} T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 3024 T - 10342595 T^{2} - 3024 p^{7} T^{3} + p^{14} T^{4} \) |
| 13 | $C_2^2$ | \( 1 + 5039 T - 37356996 T^{2} + 5039 p^{7} T^{3} + p^{14} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 3189 T + p^{7} T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 1508 T + p^{7} T^{2} )^{2} \) |
| 23 | $C_2^2$ | \( 1 + 75600 T + 2310534553 T^{2} + 75600 p^{7} T^{3} + p^{14} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 82665 T - 10416374084 T^{2} + 82665 p^{7} T^{3} + p^{14} T^{4} \) |
| 31 | $C_2^2$ | \( 1 - 174892 T + 3074597553 T^{2} - 174892 p^{7} T^{3} + p^{14} T^{4} \) |
| 37 | $C_2$ | \( ( 1 + 323569 T + p^{7} T^{2} )^{2} \) |
| 41 | $C_2^2$ | \( 1 + 308118 T - 99817571957 T^{2} + 308118 p^{7} T^{3} + p^{14} T^{4} \) |
| 43 | $C_2^2$ | \( 1 + 336680 T - 158465188707 T^{2} + 336680 p^{7} T^{3} + p^{14} T^{4} \) |
| 47 | $C_2^2$ | \( 1 + 383196 T - 359783946047 T^{2} + 383196 p^{7} T^{3} + p^{14} T^{4} \) |
| 53 | $C_2$ | \( ( 1 + 760206 T + p^{7} T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 + 2225664 T + 2464928756077 T^{2} + 2225664 p^{7} T^{3} + p^{14} T^{4} \) |
| 61 | $C_2^2$ | \( 1 + 2244815 T + 1896451548204 T^{2} + 2244815 p^{7} T^{3} + p^{14} T^{4} \) |
| 67 | $C_2^2$ | \( 1 + 1473188 T - 3890428721979 T^{2} + 1473188 p^{7} T^{3} + p^{14} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 5006892 T + p^{7} T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 + 5898301 T + p^{7} T^{2} )^{2} \) |
| 79 | $C_2^2$ | \( 1 + 7028768 T + 30199670611665 T^{2} + 7028768 p^{7} T^{3} + p^{14} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 2651196 T - 20107210759211 T^{2} + 2651196 p^{7} T^{3} + p^{14} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 6770901 T + p^{7} T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 + 16176386 T + 180877179542883 T^{2} + 16176386 p^{7} T^{3} + p^{14} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03719472501806546594764978369, −11.49773930708098193623026249306, −10.93820172749231544170830503072, −10.19578830033338212369629005631, −10.02156404243106517775191882813, −9.007174433624170436474232443470, −8.892118997898237631337935538337, −7.991495633654315643108948712125, −7.78593507555900304019491927372, −6.96327138131373984480491156613, −6.54307534890021345054734628436, −5.80945513924447681515046601577, −5.18812855186794106330884525122, −4.61741762966938221303184905023, −4.20613829575332397818940125706, −3.41020324991272017036920459122, −2.98527733613566380975822936027, −1.89341792425272311339430149905, −1.37365187520319000128052991652, −0.25687553343924753765171036965,
0.25687553343924753765171036965, 1.37365187520319000128052991652, 1.89341792425272311339430149905, 2.98527733613566380975822936027, 3.41020324991272017036920459122, 4.20613829575332397818940125706, 4.61741762966938221303184905023, 5.18812855186794106330884525122, 5.80945513924447681515046601577, 6.54307534890021345054734628436, 6.96327138131373984480491156613, 7.78593507555900304019491927372, 7.991495633654315643108948712125, 8.892118997898237631337935538337, 9.007174433624170436474232443470, 10.02156404243106517775191882813, 10.19578830033338212369629005631, 10.93820172749231544170830503072, 11.49773930708098193623026249306, 12.03719472501806546594764978369