L(s) = 1 | + 8·2-s − 165·5-s + 508·7-s − 512·8-s − 1.32e3·10-s + 3.02e3·11-s − 5.03e3·13-s + 4.06e3·14-s − 4.09e3·16-s + 6.37e3·17-s + 3.01e3·19-s + 2.41e4·22-s − 7.56e4·23-s + 7.81e4·25-s − 4.03e4·26-s − 8.26e4·29-s + 1.74e5·31-s + 5.10e4·34-s − 8.38e4·35-s − 6.47e5·37-s + 2.41e4·38-s + 8.44e4·40-s − 3.08e5·41-s − 3.36e5·43-s − 6.04e5·46-s − 3.83e5·47-s + 8.23e5·49-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.590·5-s + 0.559·7-s − 0.353·8-s − 0.417·10-s + 0.685·11-s − 0.636·13-s + 0.395·14-s − 1/4·16-s + 0.314·17-s + 0.100·19-s + 0.484·22-s − 1.29·23-s + 25-s − 0.449·26-s − 0.629·29-s + 1.05·31-s + 0.222·34-s − 0.330·35-s − 2.10·37-s + 0.0713·38-s + 0.208·40-s − 0.698·41-s − 0.645·43-s − 0.916·46-s − 0.538·47-s + 49-s + ⋯ |
Λ(s)=(=(26244s/2ΓC(s)2L(s)Λ(8−s)
Λ(s)=(=(26244s/2ΓC(s+7/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
26244
= 22⋅38
|
Sign: |
1
|
Analytic conductor: |
2561.00 |
Root analytic conductor: |
7.11381 |
Motivic weight: |
7 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 26244, ( :7/2,7/2), 1)
|
Particular Values
L(4) |
≈ |
1.195850849 |
L(21) |
≈ |
1.195850849 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−p3T+p6T2 |
| 3 | | 1 |
good | 5 | C22 | 1+33pT−2036p2T2+33p8T3+p14T4 |
| 7 | C2 | (1−1763T+p7T2)(1+1255T+p7T2) |
| 11 | C22 | 1−3024T−10342595T2−3024p7T3+p14T4 |
| 13 | C22 | 1+5039T−37356996T2+5039p7T3+p14T4 |
| 17 | C2 | (1−3189T+p7T2)2 |
| 19 | C2 | (1−1508T+p7T2)2 |
| 23 | C22 | 1+75600T+2310534553T2+75600p7T3+p14T4 |
| 29 | C22 | 1+82665T−10416374084T2+82665p7T3+p14T4 |
| 31 | C22 | 1−174892T+3074597553T2−174892p7T3+p14T4 |
| 37 | C2 | (1+323569T+p7T2)2 |
| 41 | C22 | 1+308118T−99817571957T2+308118p7T3+p14T4 |
| 43 | C22 | 1+336680T−158465188707T2+336680p7T3+p14T4 |
| 47 | C22 | 1+383196T−359783946047T2+383196p7T3+p14T4 |
| 53 | C2 | (1+760206T+p7T2)2 |
| 59 | C22 | 1+2225664T+2464928756077T2+2225664p7T3+p14T4 |
| 61 | C22 | 1+2244815T+1896451548204T2+2244815p7T3+p14T4 |
| 67 | C22 | 1+1473188T−3890428721979T2+1473188p7T3+p14T4 |
| 71 | C2 | (1−5006892T+p7T2)2 |
| 73 | C2 | (1+5898301T+p7T2)2 |
| 79 | C22 | 1+7028768T+30199670611665T2+7028768p7T3+p14T4 |
| 83 | C22 | 1+2651196T−20107210759211T2+2651196p7T3+p14T4 |
| 89 | C2 | (1−6770901T+p7T2)2 |
| 97 | C22 | 1+16176386T+180877179542883T2+16176386p7T3+p14T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03719472501806546594764978369, −11.49773930708098193623026249306, −10.93820172749231544170830503072, −10.19578830033338212369629005631, −10.02156404243106517775191882813, −9.007174433624170436474232443470, −8.892118997898237631337935538337, −7.991495633654315643108948712125, −7.78593507555900304019491927372, −6.96327138131373984480491156613, −6.54307534890021345054734628436, −5.80945513924447681515046601577, −5.18812855186794106330884525122, −4.61741762966938221303184905023, −4.20613829575332397818940125706, −3.41020324991272017036920459122, −2.98527733613566380975822936027, −1.89341792425272311339430149905, −1.37365187520319000128052991652, −0.25687553343924753765171036965,
0.25687553343924753765171036965, 1.37365187520319000128052991652, 1.89341792425272311339430149905, 2.98527733613566380975822936027, 3.41020324991272017036920459122, 4.20613829575332397818940125706, 4.61741762966938221303184905023, 5.18812855186794106330884525122, 5.80945513924447681515046601577, 6.54307534890021345054734628436, 6.96327138131373984480491156613, 7.78593507555900304019491927372, 7.991495633654315643108948712125, 8.892118997898237631337935538337, 9.007174433624170436474232443470, 10.02156404243106517775191882813, 10.19578830033338212369629005631, 10.93820172749231544170830503072, 11.49773930708098193623026249306, 12.03719472501806546594764978369