Properties

Label 4-162e2-1.1-c7e2-0-1
Degree $4$
Conductor $26244$
Sign $1$
Analytic cond. $2561.00$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 210·5-s − 1.01e3·7-s − 512·8-s + 1.68e3·10-s − 1.09e3·11-s − 1.38e3·13-s − 8.12e3·14-s − 4.09e3·16-s + 2.94e4·17-s − 7.98e4·19-s − 8.73e3·22-s − 6.87e4·23-s + 7.81e4·25-s − 1.10e4·26-s + 1.02e5·29-s − 2.27e5·31-s + 2.35e5·34-s − 2.13e5·35-s + 3.21e5·37-s − 6.39e5·38-s − 1.07e5·40-s − 1.08e4·41-s + 6.30e5·43-s − 5.49e5·46-s − 4.72e5·47-s + 8.23e5·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.751·5-s − 1.11·7-s − 0.353·8-s + 0.531·10-s − 0.247·11-s − 0.174·13-s − 0.791·14-s − 1/4·16-s + 1.45·17-s − 2.67·19-s − 0.174·22-s − 1.17·23-s + 25-s − 0.123·26-s + 0.780·29-s − 1.37·31-s + 1.02·34-s − 0.841·35-s + 1.04·37-s − 1.88·38-s − 0.265·40-s − 0.0245·41-s + 1.20·43-s − 0.832·46-s − 0.664·47-s + 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26244\)    =    \(2^{2} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2561.00\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26244,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.5151511088\)
\(L(\frac12)\) \(\approx\) \(0.5151511088\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{3} T + p^{6} T^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 42 p T - 1361 p^{2} T^{2} - 42 p^{8} T^{3} + p^{14} T^{4} \)
7$C_2^2$ \( 1 + 1016 T + 208713 T^{2} + 1016 p^{7} T^{3} + p^{14} T^{4} \)
11$C_2^2$ \( 1 + 1092 T - 18294707 T^{2} + 1092 p^{7} T^{3} + p^{14} T^{4} \)
13$C_2^2$ \( 1 + 1382 T - 60838593 T^{2} + 1382 p^{7} T^{3} + p^{14} T^{4} \)
17$C_2$ \( ( 1 - 14706 T + p^{7} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 39940 T + p^{7} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 68712 T + 1316513497 T^{2} + 68712 p^{7} T^{3} + p^{14} T^{4} \)
29$C_2^2$ \( 1 - 102570 T - 6729271409 T^{2} - 102570 p^{7} T^{3} + p^{14} T^{4} \)
31$C_2^2$ \( 1 + 227552 T + 24267298593 T^{2} + 227552 p^{7} T^{3} + p^{14} T^{4} \)
37$C_2$ \( ( 1 - 160526 T + p^{7} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 10842 T - 194636724917 T^{2} + 10842 p^{7} T^{3} + p^{14} T^{4} \)
43$C_2^2$ \( 1 - 630748 T + 126024428397 T^{2} - 630748 p^{7} T^{3} + p^{14} T^{4} \)
47$C_2^2$ \( 1 + 472656 T - 283219426127 T^{2} + 472656 p^{7} T^{3} + p^{14} T^{4} \)
53$C_2$ \( ( 1 + 1494018 T + p^{7} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 2640660 T + 4484433750781 T^{2} + 2640660 p^{7} T^{3} + p^{14} T^{4} \)
61$C_2^2$ \( 1 + 827702 T - 2457652235217 T^{2} + 827702 p^{7} T^{3} + p^{14} T^{4} \)
67$C_2^2$ \( 1 - 126004 T - 6044834597307 T^{2} - 126004 p^{7} T^{3} + p^{14} T^{4} \)
71$C_2$ \( ( 1 + 1414728 T + p^{7} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 980282 T + p^{7} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 3566800 T - 6481846746159 T^{2} - 3566800 p^{7} T^{3} + p^{14} T^{4} \)
83$C_2^2$ \( 1 + 5672892 T + 5045652654037 T^{2} + 5672892 p^{7} T^{3} + p^{14} T^{4} \)
89$C_2$ \( ( 1 + 11951190 T + p^{7} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 8682146 T - 5418625312797 T^{2} + 8682146 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.38590282405699067310956022452, −11.06787318355986964097171174062, −10.92875447280971535719004613922, −10.18899675184351352853608829798, −9.861474803056141706691768079576, −9.349678879799478911701259624787, −8.856416775850293193499677398173, −8.118665624761470450068917685764, −7.71774133683985805629707949672, −6.68285425174787471801328566547, −6.48516845401651517589623430707, −5.78086472440448823956642656773, −5.59776990575650498259692524053, −4.44166331907479062758973240146, −4.30458204941907521524887790694, −3.28627334425985638000464321709, −2.86361606282305645118690798344, −2.10434678322277747658240576645, −1.34819969205301651089558808919, −0.16362937463392281351662987648, 0.16362937463392281351662987648, 1.34819969205301651089558808919, 2.10434678322277747658240576645, 2.86361606282305645118690798344, 3.28627334425985638000464321709, 4.30458204941907521524887790694, 4.44166331907479062758973240146, 5.59776990575650498259692524053, 5.78086472440448823956642656773, 6.48516845401651517589623430707, 6.68285425174787471801328566547, 7.71774133683985805629707949672, 8.118665624761470450068917685764, 8.856416775850293193499677398173, 9.349678879799478911701259624787, 9.861474803056141706691768079576, 10.18899675184351352853608829798, 10.92875447280971535719004613922, 11.06787318355986964097171174062, 12.38590282405699067310956022452

Graph of the $Z$-function along the critical line