L(s) = 1 | + 2·5-s − 2·7-s + 4·13-s + 6·17-s − 2·19-s + 3·25-s + 12·29-s − 2·31-s − 4·35-s − 2·37-s + 12·41-s + 10·43-s + 6·47-s − 8·49-s + 18·53-s + 12·59-s − 8·61-s + 8·65-s − 8·67-s + 12·71-s + 10·73-s − 8·79-s + 6·83-s + 12·85-s − 8·91-s − 4·95-s − 2·97-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.755·7-s + 1.10·13-s + 1.45·17-s − 0.458·19-s + 3/5·25-s + 2.22·29-s − 0.359·31-s − 0.676·35-s − 0.328·37-s + 1.87·41-s + 1.52·43-s + 0.875·47-s − 8/7·49-s + 2.47·53-s + 1.56·59-s − 1.02·61-s + 0.992·65-s − 0.977·67-s + 1.42·71-s + 1.17·73-s − 0.900·79-s + 0.658·83-s + 1.30·85-s − 0.838·91-s − 0.410·95-s − 0.203·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2624400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2624400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.449660787\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.449660787\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 5 | $C_1$ | \( ( 1 - T )^{2} \) |
good | 7 | $D_{4}$ | \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 + 19 T^{2} + p^{2} T^{4} \) |
| 13 | $D_{4}$ | \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 - 6 T + 40 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 19 | $D_{4}$ | \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 23 | $C_2^2$ | \( 1 + 34 T^{2} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 - 12 T + 91 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 2 T + 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 2 T + 48 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 - 12 T + 91 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 10 T + 108 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 - 6 T + 100 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 53 | $D_{4}$ | \( 1 - 18 T + 184 T^{2} - 18 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 - 12 T + 151 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 67 | $D_{4}$ | \( 1 + 8 T + 42 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 - 12 T + 151 T^{2} - 12 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 - 10 T + 144 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 8 T + 66 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 6 T + 28 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 + 151 T^{2} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 2 T + 192 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.445793774507647510215971479441, −9.326599821164464428207386751854, −8.779425679424916360269217981607, −8.571275760361312750626586983059, −7.971780380203900873912842064569, −7.69249645127935090704980304523, −7.07640845622787122576374735369, −6.75770147679716341484852819185, −6.17415727635653731346811227811, −6.09294264949099454088106951846, −5.52591078784078507001710964719, −5.32404448871283120218357725714, −4.44869409446023593015511679432, −4.25332733345007527784652413659, −3.36814822788499321950969048033, −3.36063942565164379448368190773, −2.41348115153317722710224549998, −2.28133981595779567490894279524, −1.05917541111005367081889955987, −0.932769269361741768893001655107,
0.932769269361741768893001655107, 1.05917541111005367081889955987, 2.28133981595779567490894279524, 2.41348115153317722710224549998, 3.36063942565164379448368190773, 3.36814822788499321950969048033, 4.25332733345007527784652413659, 4.44869409446023593015511679432, 5.32404448871283120218357725714, 5.52591078784078507001710964719, 6.09294264949099454088106951846, 6.17415727635653731346811227811, 6.75770147679716341484852819185, 7.07640845622787122576374735369, 7.69249645127935090704980304523, 7.971780380203900873912842064569, 8.571275760361312750626586983059, 8.779425679424916360269217981607, 9.326599821164464428207386751854, 9.445793774507647510215971479441