L(s) = 1 | + 2·5-s − 2·7-s + 4·13-s + 6·17-s − 2·19-s + 3·25-s + 12·29-s − 2·31-s − 4·35-s − 2·37-s + 12·41-s + 10·43-s + 6·47-s − 8·49-s + 18·53-s + 12·59-s − 8·61-s + 8·65-s − 8·67-s + 12·71-s + 10·73-s − 8·79-s + 6·83-s + 12·85-s − 8·91-s − 4·95-s − 2·97-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.755·7-s + 1.10·13-s + 1.45·17-s − 0.458·19-s + 3/5·25-s + 2.22·29-s − 0.359·31-s − 0.676·35-s − 0.328·37-s + 1.87·41-s + 1.52·43-s + 0.875·47-s − 8/7·49-s + 2.47·53-s + 1.56·59-s − 1.02·61-s + 0.992·65-s − 0.977·67-s + 1.42·71-s + 1.17·73-s − 0.900·79-s + 0.658·83-s + 1.30·85-s − 0.838·91-s − 0.410·95-s − 0.203·97-s + ⋯ |
Λ(s)=(=(2624400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2624400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2624400
= 24⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
167.334 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2624400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.449660787 |
L(21) |
≈ |
3.449660787 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
good | 7 | D4 | 1+2T+12T2+2pT3+p2T4 |
| 11 | C22 | 1+19T2+p2T4 |
| 13 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 17 | D4 | 1−6T+40T2−6pT3+p2T4 |
| 19 | D4 | 1+2T+27T2+2pT3+p2T4 |
| 23 | C22 | 1+34T2+p2T4 |
| 29 | D4 | 1−12T+91T2−12pT3+p2T4 |
| 31 | D4 | 1+2T+15T2+2pT3+p2T4 |
| 37 | D4 | 1+2T+48T2+2pT3+p2T4 |
| 41 | D4 | 1−12T+91T2−12pT3+p2T4 |
| 43 | D4 | 1−10T+108T2−10pT3+p2T4 |
| 47 | D4 | 1−6T+100T2−6pT3+p2T4 |
| 53 | D4 | 1−18T+184T2−18pT3+p2T4 |
| 59 | D4 | 1−12T+151T2−12pT3+p2T4 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | D4 | 1+8T+42T2+8pT3+p2T4 |
| 71 | D4 | 1−12T+151T2−12pT3+p2T4 |
| 73 | D4 | 1−10T+144T2−10pT3+p2T4 |
| 79 | D4 | 1+8T+66T2+8pT3+p2T4 |
| 83 | D4 | 1−6T+28T2−6pT3+p2T4 |
| 89 | C22 | 1+151T2+p2T4 |
| 97 | D4 | 1+2T+192T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.445793774507647510215971479441, −9.326599821164464428207386751854, −8.779425679424916360269217981607, −8.571275760361312750626586983059, −7.971780380203900873912842064569, −7.69249645127935090704980304523, −7.07640845622787122576374735369, −6.75770147679716341484852819185, −6.17415727635653731346811227811, −6.09294264949099454088106951846, −5.52591078784078507001710964719, −5.32404448871283120218357725714, −4.44869409446023593015511679432, −4.25332733345007527784652413659, −3.36814822788499321950969048033, −3.36063942565164379448368190773, −2.41348115153317722710224549998, −2.28133981595779567490894279524, −1.05917541111005367081889955987, −0.932769269361741768893001655107,
0.932769269361741768893001655107, 1.05917541111005367081889955987, 2.28133981595779567490894279524, 2.41348115153317722710224549998, 3.36063942565164379448368190773, 3.36814822788499321950969048033, 4.25332733345007527784652413659, 4.44869409446023593015511679432, 5.32404448871283120218357725714, 5.52591078784078507001710964719, 6.09294264949099454088106951846, 6.17415727635653731346811227811, 6.75770147679716341484852819185, 7.07640845622787122576374735369, 7.69249645127935090704980304523, 7.971780380203900873912842064569, 8.571275760361312750626586983059, 8.779425679424916360269217981607, 9.326599821164464428207386751854, 9.445793774507647510215971479441