Properties

Label 4-15e4-1.1-c11e2-0-5
Degree $4$
Conductor $50625$
Sign $1$
Analytic cond. $29886.5$
Root an. cond. $13.1482$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.94e3·4-s + 9.37e5·11-s + 4.44e6·16-s + 7.58e5·19-s + 1.39e8·29-s + 3.42e8·31-s − 3.82e8·41-s + 2.75e9·44-s + 3.64e9·49-s + 1.85e9·59-s − 2.17e10·61-s + 7.49e8·64-s + 4.59e10·71-s + 2.23e9·76-s + 4.15e10·79-s + 1.26e11·89-s − 6.57e10·101-s + 3.32e11·109-s + 4.09e11·116-s + 8.86e10·121-s + 1.00e12·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1.43·4-s + 1.75·11-s + 1.06·16-s + 0.0703·19-s + 1.26·29-s + 2.15·31-s − 0.515·41-s + 2.51·44-s + 1.84·49-s + 0.337·59-s − 3.30·61-s + 0.0872·64-s + 3.02·71-s + 0.100·76-s + 1.51·79-s + 2.39·89-s − 0.622·101-s + 2.06·109-s + 1.81·116-s + 0.310·121-s + 3.08·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(29886.5\)
Root analytic conductor: \(13.1482\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 50625,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(9.147660967\)
\(L(\frac12)\) \(\approx\) \(9.147660967\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 - 735 p^{2} T^{2} + p^{22} T^{4} \)
7$C_2^2$ \( 1 - 74417150 p^{2} T^{2} + p^{22} T^{4} \)
11$C_2$ \( ( 1 - 468788 T + p^{11} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 3444413370310 T^{2} + p^{22} T^{4} \)
17$C_2^2$ \( 1 - 54673486405470 T^{2} + p^{22} T^{4} \)
19$C_2$ \( ( 1 - 379460 T + p^{11} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 852091779547390 T^{2} + p^{22} T^{4} \)
29$C_2$ \( ( 1 - 69696710 T + p^{11} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 171448632 T + p^{11} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 270955929815342710 T^{2} + p^{22} T^{4} \)
41$C_2$ \( ( 1 + 191343242 T + p^{11} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 1238510561234596250 T^{2} + p^{22} T^{4} \)
47$C_2^2$ \( 1 - 2308663836035458830 T^{2} + p^{22} T^{4} \)
53$C_2^2$ \( 1 - 18122190498163779030 T^{2} + p^{22} T^{4} \)
59$C_2$ \( ( 1 - 925569220 T + p^{11} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10898589338 T + p^{11} T^{2} )^{2} \)
67$C_2^2$ \( 1 - \)\(22\!\cdots\!70\)\( T^{2} + p^{22} T^{4} \)
71$C_2$ \( ( 1 - 22966943728 T + p^{11} T^{2} )^{2} \)
73$C_2^2$ \( 1 - \)\(52\!\cdots\!90\)\( T^{2} + p^{22} T^{4} \)
79$C_2$ \( ( 1 - 20768886240 T + p^{11} T^{2} )^{2} \)
83$C_2^2$ \( 1 - \)\(25\!\cdots\!70\)\( T^{2} + p^{22} T^{4} \)
89$C_2$ \( ( 1 - 63176321130 T + p^{11} T^{2} )^{2} \)
97$C_2^2$ \( 1 + \)\(16\!\cdots\!70\)\( T^{2} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61921560795186056267024799979, −10.20263938595506304731164461807, −9.441148596522100577159613725891, −9.228688893309457541910115718214, −8.494516405132351907163737405973, −8.055405028171616443499515358311, −7.52076933974139008109374287875, −6.82669395112977679082265700392, −6.63539860469919004491352015119, −6.21601378029021544673146000707, −5.79250806607480924031622821976, −4.78614980631129570789448422622, −4.52907083307544702120402469411, −3.65274118774266395283472719649, −3.31598488453778144612105497702, −2.54303800424086385370996950014, −2.21846453531789569874999858891, −1.48729636064225494344051705010, −1.02036177396865865083428663933, −0.61165366392120280322022220269, 0.61165366392120280322022220269, 1.02036177396865865083428663933, 1.48729636064225494344051705010, 2.21846453531789569874999858891, 2.54303800424086385370996950014, 3.31598488453778144612105497702, 3.65274118774266395283472719649, 4.52907083307544702120402469411, 4.78614980631129570789448422622, 5.79250806607480924031622821976, 6.21601378029021544673146000707, 6.63539860469919004491352015119, 6.82669395112977679082265700392, 7.52076933974139008109374287875, 8.055405028171616443499515358311, 8.494516405132351907163737405973, 9.228688893309457541910115718214, 9.441148596522100577159613725891, 10.20263938595506304731164461807, 10.61921560795186056267024799979

Graph of the $Z$-function along the critical line