Properties

Label 4-15e4-1.1-c11e2-0-2
Degree $4$
Conductor $50625$
Sign $1$
Analytic cond. $29886.5$
Root an. cond. $13.1482$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.57e3·4-s − 1.16e5·7-s − 1.52e6·13-s − 1.71e6·16-s − 2.06e7·19-s + 1.83e8·28-s + 2.12e8·31-s + 1.91e7·37-s − 3.18e9·43-s + 6.17e9·49-s + 2.40e9·52-s − 6.18e9·61-s + 9.30e9·64-s + 1.82e10·67-s − 1.24e9·73-s + 3.24e10·76-s + 2.12e10·79-s + 1.77e11·91-s − 2.63e11·97-s − 1.59e11·103-s − 5.78e10·109-s + 1.98e11·112-s − 5.44e11·121-s − 3.34e11·124-s + 127-s + 131-s + 2.39e12·133-s + ⋯
L(s)  = 1  − 0.769·4-s − 2.61·7-s − 1.13·13-s − 0.407·16-s − 1.90·19-s + 2.01·28-s + 1.33·31-s + 0.0453·37-s − 3.30·43-s + 3.12·49-s + 0.876·52-s − 0.937·61-s + 1.08·64-s + 1.64·67-s − 0.0700·73-s + 1.46·76-s + 0.776·79-s + 2.97·91-s − 3.11·97-s − 1.35·103-s − 0.360·109-s + 1.06·112-s − 1.90·121-s − 1.02·124-s + 4.98·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(29886.5\)
Root analytic conductor: \(13.1482\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 50625,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.4055428073\)
\(L(\frac12)\) \(\approx\) \(0.4055428073\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 + 197 p^{3} T^{2} + p^{22} T^{4} \)
7$C_2$ \( ( 1 + 8300 p T + p^{11} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 544818541222 T^{2} + p^{22} T^{4} \)
13$C_2$ \( ( 1 + 762650 T + p^{11} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 11975946694814 T^{2} + p^{22} T^{4} \)
19$C_2$ \( ( 1 + 10301704 T + p^{11} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 1797531507451534 T^{2} + p^{22} T^{4} \)
29$C_2^2$ \( 1 + 4519838782611658 T^{2} + p^{22} T^{4} \)
31$C_2$ \( ( 1 - 106159508 T + p^{11} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 9574450 T + p^{11} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 1088883326741296882 T^{2} + p^{22} T^{4} \)
43$C_2$ \( ( 1 + 1590697400 T + p^{11} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 2869299998598432286 T^{2} + p^{22} T^{4} \)
53$C_2^2$ \( 1 + 17432708152043665114 T^{2} + p^{22} T^{4} \)
59$C_2^2$ \( 1 + 26931896409526885318 T^{2} + p^{22} T^{4} \)
61$C_2$ \( ( 1 + 3092621098 T + p^{11} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 9113820400 T + p^{11} T^{2} )^{2} \)
71$C_2^2$ \( 1 + \)\(45\!\cdots\!42\)\( T^{2} + p^{22} T^{4} \)
73$C_2$ \( ( 1 + 620142950 T + p^{11} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10618486484 T + p^{11} T^{2} )^{2} \)
83$C_2^2$ \( 1 - \)\(10\!\cdots\!46\)\( T^{2} + p^{22} T^{4} \)
89$C_2^2$ \( 1 + \)\(17\!\cdots\!78\)\( T^{2} + p^{22} T^{4} \)
97$C_2$ \( ( 1 + 131872902350 T + p^{11} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27306972014214677424072267439, −9.926753711338395529358384466252, −9.550473532620835478292094314931, −9.333957301151685202489751922628, −8.473324664934314829344872794024, −8.403810823148270814426618683137, −7.55130382473784526550574395477, −6.62101743287925088940428424289, −6.57317011872127314862130479674, −6.47601338878393177011049597221, −5.37555545339293881916220935439, −5.02932996454927522834912135273, −4.20027039529763308367304236105, −3.99978935426779498588312116118, −3.18666941895583721179564963569, −2.83279102909134229433234271406, −2.29568898286831369998046161364, −1.53092399206508955062576061958, −0.41335054186487489840419172138, −0.27377349267502761270351220858, 0.27377349267502761270351220858, 0.41335054186487489840419172138, 1.53092399206508955062576061958, 2.29568898286831369998046161364, 2.83279102909134229433234271406, 3.18666941895583721179564963569, 3.99978935426779498588312116118, 4.20027039529763308367304236105, 5.02932996454927522834912135273, 5.37555545339293881916220935439, 6.47601338878393177011049597221, 6.57317011872127314862130479674, 6.62101743287925088940428424289, 7.55130382473784526550574395477, 8.403810823148270814426618683137, 8.473324664934314829344872794024, 9.333957301151685202489751922628, 9.550473532620835478292094314931, 9.926753711338395529358384466252, 10.27306972014214677424072267439

Graph of the $Z$-function along the critical line