L(s) = 1 | + 3·2-s + 4-s − 14·7-s + 3·8-s − 62·11-s + 6·13-s − 42·14-s + 9·16-s + 40·17-s − 122·19-s − 186·22-s + 16·23-s + 18·26-s − 14·28-s − 352·29-s + 66·31-s − 165·32-s + 120·34-s + 188·37-s − 366·38-s − 16·41-s + 396·43-s − 62·44-s + 48·46-s − 188·47-s + 147·49-s + 6·52-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 1/8·4-s − 0.755·7-s + 0.132·8-s − 1.69·11-s + 0.128·13-s − 0.801·14-s + 9/64·16-s + 0.570·17-s − 1.47·19-s − 1.80·22-s + 0.145·23-s + 0.135·26-s − 0.0944·28-s − 2.25·29-s + 0.382·31-s − 0.911·32-s + 0.605·34-s + 0.835·37-s − 1.56·38-s − 0.0609·41-s + 1.40·43-s − 0.212·44-s + 0.153·46-s − 0.583·47-s + 3/7·49-s + 0.0160·52-s + ⋯ |
Λ(s)=(=(2480625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(2480625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2480625
= 34⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
8635.61 |
Root analytic conductor: |
9.63991 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2480625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
| 7 | C1 | (1+pT)2 |
good | 2 | D4 | 1−3T+p3T2−3p3T3+p6T4 |
| 11 | D4 | 1+62T+3582T2+62p3T3+p6T4 |
| 13 | D4 | 1−6T+3378T2−6p3T3+p6T4 |
| 17 | D4 | 1−40T+8750T2−40p3T3+p6T4 |
| 19 | D4 | 1+122T+17398T2+122p3T3+p6T4 |
| 23 | D4 | 1−16T+34pT2−16p3T3+p6T4 |
| 29 | D4 | 1+352T+78278T2+352p3T3+p6T4 |
| 31 | D4 | 1−66T+45870T2−66p3T3+p6T4 |
| 37 | D4 | 1−188T+44542T2−188p3T3+p6T4 |
| 41 | D4 | 1+16T+18350T2+16p3T3+p6T4 |
| 43 | D4 | 1−396T+2226pT2−396p3T3+p6T4 |
| 47 | D4 | 1+4pT+15582T2+4p4T3+p6T4 |
| 53 | D4 | 1−982T+504354T2−982p3T3+p6T4 |
| 59 | D4 | 1+516T+418118T2+516p3T3+p6T4 |
| 61 | D4 | 1+880T+575238T2+880p3T3+p6T4 |
| 67 | D4 | 1−356T+100374T2−356p3T3+p6T4 |
| 71 | D4 | 1+310T+664038T2+310p3T3+p6T4 |
| 73 | D4 | 1+326T+789802T2+326p3T3+p6T4 |
| 79 | D4 | 1−1832T+1824478T2−1832p3T3+p6T4 |
| 83 | D4 | 1+680T+744870T2+680p3T3+p6T4 |
| 89 | D4 | 1+796T+411158T2+796p3T3+p6T4 |
| 97 | D4 | 1−670T+1145410T2−670p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.761543260320092012523303247857, −8.575373559479012227022536871869, −7.84234479147763474799855470839, −7.57878062627741873562892991580, −7.41779908318893452241332078150, −6.75132231929841740465151123716, −6.25544222955419009800857274325, −5.88656040652363805603672663416, −5.48125778991697088863055260271, −5.21806612470637396149750558220, −4.62089319860350269156947609330, −4.26124502480101793559116704086, −3.80202910354351671165325917116, −3.44510499800316644381209374912, −2.73969600391756561547826051309, −2.42003280597919928770959819897, −1.86520601809035991412245784928, −1.00965334270187999610832995518, 0, 0,
1.00965334270187999610832995518, 1.86520601809035991412245784928, 2.42003280597919928770959819897, 2.73969600391756561547826051309, 3.44510499800316644381209374912, 3.80202910354351671165325917116, 4.26124502480101793559116704086, 4.62089319860350269156947609330, 5.21806612470637396149750558220, 5.48125778991697088863055260271, 5.88656040652363805603672663416, 6.25544222955419009800857274325, 6.75132231929841740465151123716, 7.41779908318893452241332078150, 7.57878062627741873562892991580, 7.84234479147763474799855470839, 8.575373559479012227022536871869, 8.761543260320092012523303247857