L(s) = 1 | + 2-s + 4-s + 14·7-s + 9·8-s + 22·11-s + 22·13-s + 14·14-s − 47·16-s + 116·17-s + 102·19-s + 22·22-s + 260·23-s + 22·26-s + 14·28-s + 196·29-s + 150·31-s − 103·32-s + 116·34-s + 96·37-s + 102·38-s + 176·41-s + 344·43-s + 22·44-s + 260·46-s + 560·47-s + 147·49-s + 22·52-s + ⋯ |
L(s) = 1 | + 0.353·2-s + 1/8·4-s + 0.755·7-s + 0.397·8-s + 0.603·11-s + 0.469·13-s + 0.267·14-s − 0.734·16-s + 1.65·17-s + 1.23·19-s + 0.213·22-s + 2.35·23-s + 0.165·26-s + 0.0944·28-s + 1.25·29-s + 0.869·31-s − 0.568·32-s + 0.585·34-s + 0.426·37-s + 0.435·38-s + 0.670·41-s + 1.21·43-s + 0.0753·44-s + 0.833·46-s + 1.73·47-s + 3/7·49-s + 0.0586·52-s + ⋯ |
Λ(s)=(=(2480625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(2480625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2480625
= 34⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
8635.61 |
Root analytic conductor: |
9.63991 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 2480625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
9.355888382 |
L(21) |
≈ |
9.355888382 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | | 1 |
| 7 | C1 | (1−pT)2 |
good | 2 | D4 | 1−T−p3T3+p6T4 |
| 11 | D4 | 1−2pT+2718T2−2p4T3+p6T4 |
| 13 | D4 | 1−22T+4450T2−22p3T3+p6T4 |
| 17 | D4 | 1−116T+9030T2−116p3T3+p6T4 |
| 19 | D4 | 1−102T+13134T2−102p3T3+p6T4 |
| 23 | D4 | 1−260T+34734T2−260p3T3+p6T4 |
| 29 | D4 | 1−196T+20942T2−196p3T3+p6T4 |
| 31 | D4 | 1−150T+36542T2−150p3T3+p6T4 |
| 37 | D4 | 1−96T+82550T2−96p3T3+p6T4 |
| 41 | D4 | 1−176T−16914T2−176p3T3+p6T4 |
| 43 | D4 | 1−8pT+171958T2−8p4T3+p6T4 |
| 47 | D4 | 1−560T+248606T2−560p3T3+p6T4 |
| 53 | D4 | 1−326T+204138T2−326p3T3+p6T4 |
| 59 | D4 | 1−844T+474182T2−844p3T3+p6T4 |
| 61 | D4 | 1+204T+455006T2+204p3T3+p6T4 |
| 67 | D4 | 1−104T+537670T2−104p3T3+p6T4 |
| 71 | D4 | 1+1670T+1384382T2+1670p3T3+p6T4 |
| 73 | D4 | 1−386T+152218T2−386p3T3+p6T4 |
| 79 | D4 | 1+888T+1007454T2+888p3T3+p6T4 |
| 83 | D4 | 1−928T+600710T2−928p3T3+p6T4 |
| 89 | D4 | 1+588T+1495334T2+588p3T3+p6T4 |
| 97 | D4 | 1+522T+291282T2+522p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153353705586358740942453497971, −8.960656834628883649582115361595, −8.368641941146238382480236027923, −8.186452121397549362486943745535, −7.43914919027476010469579570411, −7.24818549978646837826075463789, −7.06808266693983678354571484620, −6.43959070042050899162803219312, −5.76931935054066266328814399972, −5.66835861805718313452857892909, −5.08914932039572729156213172901, −4.71682878057123809705274692271, −4.24060652882825234153686283219, −3.88725987228588153584368358120, −3.16535486675948784249367220519, −2.81147344313458567046704702605, −2.36092577727575558637389361475, −1.37364563684643671998184723910, −1.01387528047532492512745754127, −0.825756224556272554430617877710,
0.825756224556272554430617877710, 1.01387528047532492512745754127, 1.37364563684643671998184723910, 2.36092577727575558637389361475, 2.81147344313458567046704702605, 3.16535486675948784249367220519, 3.88725987228588153584368358120, 4.24060652882825234153686283219, 4.71682878057123809705274692271, 5.08914932039572729156213172901, 5.66835861805718313452857892909, 5.76931935054066266328814399972, 6.43959070042050899162803219312, 7.06808266693983678354571484620, 7.24818549978646837826075463789, 7.43914919027476010469579570411, 8.186452121397549362486943745535, 8.368641941146238382480236027923, 8.960656834628883649582115361595, 9.153353705586358740942453497971