| L(s) = 1 | − 2-s − 2·4-s + 2·7-s + 3·8-s − 4·11-s − 2·13-s − 2·14-s + 16-s + 4·17-s + 4·22-s − 8·23-s + 2·26-s − 4·28-s − 10·29-s − 6·31-s − 2·32-s − 4·34-s + 6·37-s − 14·41-s + 8·43-s + 8·44-s + 8·46-s + 4·47-s + 3·49-s + 4·52-s − 8·53-s + 6·56-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 4-s + 0.755·7-s + 1.06·8-s − 1.20·11-s − 0.554·13-s − 0.534·14-s + 1/4·16-s + 0.970·17-s + 0.852·22-s − 1.66·23-s + 0.392·26-s − 0.755·28-s − 1.85·29-s − 1.07·31-s − 0.353·32-s − 0.685·34-s + 0.986·37-s − 2.18·41-s + 1.21·43-s + 1.20·44-s + 1.17·46-s + 0.583·47-s + 3/7·49-s + 0.554·52-s − 1.09·53-s + 0.801·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2480625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2480625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.152324080860552896873138965367, −8.936648158082366501215000495106, −8.355908125083163166920436300508, −8.091469851647682618347906093718, −7.66039773680149360912047345536, −7.54275012010090119320379393016, −7.14652234007855425244534984426, −6.29776151072495911938790822439, −5.78576543405928746189519590599, −5.49108109204687166760062541317, −5.17365756280936866046728723114, −4.59661848624300459361287539544, −4.19700420641347457049770580460, −3.84309314686664368207717091926, −3.07642602529909298248137749277, −2.59568940076681454060396923237, −1.74271250672807477164152803198, −1.42478666260907303296009538598, 0, 0,
1.42478666260907303296009538598, 1.74271250672807477164152803198, 2.59568940076681454060396923237, 3.07642602529909298248137749277, 3.84309314686664368207717091926, 4.19700420641347457049770580460, 4.59661848624300459361287539544, 5.17365756280936866046728723114, 5.49108109204687166760062541317, 5.78576543405928746189519590599, 6.29776151072495911938790822439, 7.14652234007855425244534984426, 7.54275012010090119320379393016, 7.66039773680149360912047345536, 8.091469851647682618347906093718, 8.355908125083163166920436300508, 8.936648158082366501215000495106, 9.152324080860552896873138965367