Properties

Label 4-155952-1.1-c1e2-0-11
Degree $4$
Conductor $155952$
Sign $1$
Analytic cond. $9.94363$
Root an. cond. $1.77576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s + 9-s − 2·11-s + 2·12-s + 4·13-s − 4·16-s + 2·18-s − 4·22-s + 8·23-s − 25-s + 8·26-s + 27-s − 8·32-s − 2·33-s + 2·36-s + 4·39-s − 4·44-s + 16·46-s + 18·47-s − 4·48-s + 11·49-s − 2·50-s + 8·52-s + 2·54-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 1/3·9-s − 0.603·11-s + 0.577·12-s + 1.10·13-s − 16-s + 0.471·18-s − 0.852·22-s + 1.66·23-s − 1/5·25-s + 1.56·26-s + 0.192·27-s − 1.41·32-s − 0.348·33-s + 1/3·36-s + 0.640·39-s − 0.603·44-s + 2.35·46-s + 2.62·47-s − 0.577·48-s + 11/7·49-s − 0.282·50-s + 1.10·52-s + 0.272·54-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(155952\)    =    \(2^{4} \cdot 3^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(9.94363\)
Root analytic conductor: \(1.77576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 155952,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.249284223\)
\(L(\frac12)\) \(\approx\) \(4.249284223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3$C_1$ \( 1 - T \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.028755790922139382896168795846, −8.794614827642349780603070220632, −8.439333560047520544649775927937, −7.66505986486694333159066241147, −7.12629091377271134552327540430, −6.85073886350288365363080648917, −6.12241751609850681792173625996, −5.52282167690075554303727517698, −5.34668146252658900228619106104, −4.53894929342930739368620916750, −3.92764554574875840306496068176, −3.67840796781373175574076394185, −2.61687998381550726785939862479, −2.61182434413499280414159715388, −1.19093389013722883778513109873, 1.19093389013722883778513109873, 2.61182434413499280414159715388, 2.61687998381550726785939862479, 3.67840796781373175574076394185, 3.92764554574875840306496068176, 4.53894929342930739368620916750, 5.34668146252658900228619106104, 5.52282167690075554303727517698, 6.12241751609850681792173625996, 6.85073886350288365363080648917, 7.12629091377271134552327540430, 7.66505986486694333159066241147, 8.439333560047520544649775927937, 8.794614827642349780603070220632, 9.028755790922139382896168795846

Graph of the $Z$-function along the critical line