Properties

Label 4-1539e2-1.1-c0e2-0-6
Degree $4$
Conductor $2368521$
Sign $1$
Analytic cond. $0.589917$
Root an. cond. $0.876390$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·5-s + 7-s − 11-s + 2·17-s + 2·19-s − 2·20-s − 23-s + 25-s − 28-s + 2·35-s + 43-s + 44-s − 47-s + 49-s − 2·55-s + 61-s + 64-s − 2·68-s − 2·73-s − 2·76-s − 77-s + 2·83-s + 4·85-s + 92-s + 4·95-s − 100-s + ⋯
L(s)  = 1  − 4-s + 2·5-s + 7-s − 11-s + 2·17-s + 2·19-s − 2·20-s − 23-s + 25-s − 28-s + 2·35-s + 43-s + 44-s − 47-s + 49-s − 2·55-s + 61-s + 64-s − 2·68-s − 2·73-s − 2·76-s − 77-s + 2·83-s + 4·85-s + 92-s + 4·95-s − 100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2368521\)    =    \(3^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.589917\)
Root analytic conductor: \(0.876390\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2368521,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.511495860\)
\(L(\frac12)\) \(\approx\) \(1.511495860\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.955146669020100099234226323524, −9.473350366130719601899813161456, −9.267016579407686003073661140496, −8.688641296225293314978865255507, −8.282249022368222087371795885205, −7.82044468243207811765996315903, −7.57377715365348270152309666477, −7.25223459027173445593860181239, −6.41565335976116401627386509961, −5.91562007881711043693400735385, −5.66063028445808983305019119877, −5.40007072398068789325028412127, −4.85292776070008308252552085477, −4.84111666168071033696443910353, −3.68863392047217206878572793539, −3.66804513659111975324488354019, −2.53988542889064469549143382216, −2.48586216376119661316447639978, −1.51032557721313214793448982898, −1.19677184367361732318077074642, 1.19677184367361732318077074642, 1.51032557721313214793448982898, 2.48586216376119661316447639978, 2.53988542889064469549143382216, 3.66804513659111975324488354019, 3.68863392047217206878572793539, 4.84111666168071033696443910353, 4.85292776070008308252552085477, 5.40007072398068789325028412127, 5.66063028445808983305019119877, 5.91562007881711043693400735385, 6.41565335976116401627386509961, 7.25223459027173445593860181239, 7.57377715365348270152309666477, 7.82044468243207811765996315903, 8.282249022368222087371795885205, 8.688641296225293314978865255507, 9.267016579407686003073661140496, 9.473350366130719601899813161456, 9.955146669020100099234226323524

Graph of the $Z$-function along the critical line