Properties

Label 4-1539e2-1.1-c0e2-0-2
Degree $4$
Conductor $2368521$
Sign $1$
Analytic cond. $0.589917$
Root an. cond. $0.876390$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·7-s − 2·19-s + 25-s − 2·28-s − 2·43-s + 49-s + 2·61-s + 64-s + 4·73-s + 2·76-s − 100-s + 121-s + 127-s + 131-s − 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 2·172-s + 173-s + 2·175-s + ⋯
L(s)  = 1  − 4-s + 2·7-s − 2·19-s + 25-s − 2·28-s − 2·43-s + 49-s + 2·61-s + 64-s + 4·73-s + 2·76-s − 100-s + 121-s + 127-s + 131-s − 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 2·172-s + 173-s + 2·175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2368521\)    =    \(3^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.589917\)
Root analytic conductor: \(0.876390\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2368521,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.014906846\)
\(L(\frac12)\) \(\approx\) \(1.014906846\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good2$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 + T + T^{2} )^{2} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$ \( ( 1 - T )^{4} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2^2$ \( 1 - T^{2} + T^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.650650723555546499837889486937, −9.591868969544966823045710407033, −8.730148848928685601726001051578, −8.558946423750725839661811112207, −8.474636817366710069209099881886, −7.991714930447270107550244874221, −7.68887658138772391712740438446, −6.90991640501894632064400396441, −6.69439800160805780778358107061, −6.28457714275770450267394569604, −5.53377714286828253659788043297, −4.99039715913136716743313058003, −4.98429692524604869927217162874, −4.55171657735019891948331621602, −3.98089474169719410148789408788, −3.69363420196059329012473283860, −2.83438931511686711694233439477, −1.95041990697815776784972040938, −1.94961909288261607304824594752, −0.854543512450298525288623978530, 0.854543512450298525288623978530, 1.94961909288261607304824594752, 1.95041990697815776784972040938, 2.83438931511686711694233439477, 3.69363420196059329012473283860, 3.98089474169719410148789408788, 4.55171657735019891948331621602, 4.98429692524604869927217162874, 4.99039715913136716743313058003, 5.53377714286828253659788043297, 6.28457714275770450267394569604, 6.69439800160805780778358107061, 6.90991640501894632064400396441, 7.68887658138772391712740438446, 7.991714930447270107550244874221, 8.474636817366710069209099881886, 8.558946423750725839661811112207, 8.730148848928685601726001051578, 9.591868969544966823045710407033, 9.650650723555546499837889486937

Graph of the $Z$-function along the critical line