Properties

Label 4-1539e2-1.1-c0e2-0-1
Degree $4$
Conductor $2368521$
Sign $1$
Analytic cond. $0.589917$
Root an. cond. $0.876390$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s + 7-s + 11-s − 2·17-s + 2·19-s + 2·20-s + 23-s + 25-s − 28-s − 2·35-s + 43-s − 44-s + 47-s + 49-s − 2·55-s + 61-s + 64-s + 2·68-s − 2·73-s − 2·76-s + 77-s − 2·83-s + 4·85-s − 92-s − 4·95-s − 100-s + ⋯
L(s)  = 1  − 4-s − 2·5-s + 7-s + 11-s − 2·17-s + 2·19-s + 2·20-s + 23-s + 25-s − 28-s − 2·35-s + 43-s − 44-s + 47-s + 49-s − 2·55-s + 61-s + 64-s + 2·68-s − 2·73-s − 2·76-s + 77-s − 2·83-s + 4·85-s − 92-s − 4·95-s − 100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2368521\)    =    \(3^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.589917\)
Root analytic conductor: \(0.876390\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2368521,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6061662413\)
\(L(\frac12)\) \(\approx\) \(0.6061662413\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
19$C_1$ \( ( 1 - T )^{2} \)
good2$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
5$C_2$ \( ( 1 + T + T^{2} )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
11$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 + T + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.991254375442355384779665473360, −9.058530300766132568082353512907, −9.054462350221225449902312093549, −8.710558031456455191830366852290, −8.346198557202789518640600511744, −7.84820460346061225194974113133, −7.46121563503960108225571751684, −7.08203191634842699397075795090, −7.01425878384551667760183793133, −6.14373512733645951645331919850, −5.67640108097000367348816951767, −5.07712747365096459048640149400, −4.72118727351530114599418890414, −4.28821936830943606031486906638, −4.07023875252508139076595206675, −3.69854526041394775218606109420, −3.04431156110291739140011353220, −2.38859209161679823867295914143, −1.47346561983698824087167778859, −0.69206603536665633115030562796, 0.69206603536665633115030562796, 1.47346561983698824087167778859, 2.38859209161679823867295914143, 3.04431156110291739140011353220, 3.69854526041394775218606109420, 4.07023875252508139076595206675, 4.28821936830943606031486906638, 4.72118727351530114599418890414, 5.07712747365096459048640149400, 5.67640108097000367348816951767, 6.14373512733645951645331919850, 7.01425878384551667760183793133, 7.08203191634842699397075795090, 7.46121563503960108225571751684, 7.84820460346061225194974113133, 8.346198557202789518640600511744, 8.710558031456455191830366852290, 9.054462350221225449902312093549, 9.058530300766132568082353512907, 9.991254375442355384779665473360

Graph of the $Z$-function along the critical line