L(s) = 1 | + 4·3-s − 4·5-s + 6·9-s − 2·11-s − 16·15-s − 8·23-s + 2·25-s − 4·27-s − 8·33-s − 20·37-s − 24·45-s + 16·47-s + 2·49-s + 12·53-s + 8·55-s + 28·59-s + 20·67-s − 32·69-s − 24·71-s + 8·75-s − 37·81-s − 4·89-s − 4·97-s − 12·99-s + 8·103-s − 80·111-s + 4·113-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 1.78·5-s + 2·9-s − 0.603·11-s − 4.13·15-s − 1.66·23-s + 2/5·25-s − 0.769·27-s − 1.39·33-s − 3.28·37-s − 3.57·45-s + 2.33·47-s + 2/7·49-s + 1.64·53-s + 1.07·55-s + 3.64·59-s + 2.44·67-s − 3.85·69-s − 2.84·71-s + 0.923·75-s − 4.11·81-s − 0.423·89-s − 0.406·97-s − 1.20·99-s + 0.788·103-s − 7.59·111-s + 0.376·113-s + ⋯ |
Λ(s)=(=(1982464s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1982464s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1982464
= 214⋅112
|
Sign: |
1
|
Analytic conductor: |
126.403 |
Root analytic conductor: |
3.35304 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1982464, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.671818297 |
L(21) |
≈ |
1.671818297 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C2 | 1+2T+pT2 |
good | 3 | C2 | (1−2T+pT2)2 |
| 5 | C2 | (1+2T+pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 23 | C2 | (1+4T+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−14T+pT2)2 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−10T+pT2)2 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | C2 | (1+2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.051397256544459587474063215822, −7.33738117792255002879146989083, −7.28624614008190284194684658876, −6.95203079036524006513160995367, −5.94748687441979739999249646343, −5.57971042236015603393981708123, −5.16542238567969836254694300670, −4.22499492266902913993361093129, −3.91058908136761919842529082491, −3.74391345354838938964523130661, −3.39209478584729487520505941993, −2.63262233065457230393893973638, −2.30676446591740616355718333113, −1.82152115990232001116828319877, −0.42520644735956268098029720198,
0.42520644735956268098029720198, 1.82152115990232001116828319877, 2.30676446591740616355718333113, 2.63262233065457230393893973638, 3.39209478584729487520505941993, 3.74391345354838938964523130661, 3.91058908136761919842529082491, 4.22499492266902913993361093129, 5.16542238567969836254694300670, 5.57971042236015603393981708123, 5.94748687441979739999249646343, 6.95203079036524006513160995367, 7.28624614008190284194684658876, 7.33738117792255002879146989083, 8.051397256544459587474063215822