Properties

Label 4-1408e2-1.1-c1e2-0-2
Degree $4$
Conductor $1982464$
Sign $1$
Analytic cond. $126.403$
Root an. cond. $3.35304$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 4·5-s + 6·9-s − 2·11-s − 16·15-s − 8·23-s + 2·25-s − 4·27-s − 8·33-s − 20·37-s − 24·45-s + 16·47-s + 2·49-s + 12·53-s + 8·55-s + 28·59-s + 20·67-s − 32·69-s − 24·71-s + 8·75-s − 37·81-s − 4·89-s − 4·97-s − 12·99-s + 8·103-s − 80·111-s + 4·113-s + ⋯
L(s)  = 1  + 2.30·3-s − 1.78·5-s + 2·9-s − 0.603·11-s − 4.13·15-s − 1.66·23-s + 2/5·25-s − 0.769·27-s − 1.39·33-s − 3.28·37-s − 3.57·45-s + 2.33·47-s + 2/7·49-s + 1.64·53-s + 1.07·55-s + 3.64·59-s + 2.44·67-s − 3.85·69-s − 2.84·71-s + 0.923·75-s − 4.11·81-s − 0.423·89-s − 0.406·97-s − 1.20·99-s + 0.788·103-s − 7.59·111-s + 0.376·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1982464 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1982464 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1982464\)    =    \(2^{14} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(126.403\)
Root analytic conductor: \(3.35304\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1982464,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.671818297\)
\(L(\frac12)\) \(\approx\) \(1.671818297\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.051397256544459587474063215822, −7.33738117792255002879146989083, −7.28624614008190284194684658876, −6.95203079036524006513160995367, −5.94748687441979739999249646343, −5.57971042236015603393981708123, −5.16542238567969836254694300670, −4.22499492266902913993361093129, −3.91058908136761919842529082491, −3.74391345354838938964523130661, −3.39209478584729487520505941993, −2.63262233065457230393893973638, −2.30676446591740616355718333113, −1.82152115990232001116828319877, −0.42520644735956268098029720198, 0.42520644735956268098029720198, 1.82152115990232001116828319877, 2.30676446591740616355718333113, 2.63262233065457230393893973638, 3.39209478584729487520505941993, 3.74391345354838938964523130661, 3.91058908136761919842529082491, 4.22499492266902913993361093129, 5.16542238567969836254694300670, 5.57971042236015603393981708123, 5.94748687441979739999249646343, 6.95203079036524006513160995367, 7.28624614008190284194684658876, 7.33738117792255002879146989083, 8.051397256544459587474063215822

Graph of the $Z$-function along the critical line