L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 5·16-s + 8·17-s + 12·19-s − 4·23-s + 14·31-s + 6·32-s + 16·34-s + 24·38-s − 8·46-s + 4·47-s + 5·49-s − 6·53-s − 8·61-s + 28·62-s + 7·64-s + 24·68-s + 36·76-s − 10·83-s − 12·92-s + 8·94-s + 10·98-s − 12·106-s + 30·107-s + 20·109-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s + 5/4·16-s + 1.94·17-s + 2.75·19-s − 0.834·23-s + 2.51·31-s + 1.06·32-s + 2.74·34-s + 3.89·38-s − 1.17·46-s + 0.583·47-s + 5/7·49-s − 0.824·53-s − 1.02·61-s + 3.55·62-s + 7/8·64-s + 2.91·68-s + 4.12·76-s − 1.09·83-s − 1.25·92-s + 0.825·94-s + 1.01·98-s − 1.16·106-s + 2.90·107-s + 1.91·109-s + ⋯ |
Λ(s)=(=(1822500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1822500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1822500
= 22⋅36⋅54
|
Sign: |
1
|
Analytic conductor: |
116.204 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1822500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.583417374 |
L(21) |
≈ |
7.583417374 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1−5T2+p2T4 |
| 11 | C22 | 1+3T2+p2T4 |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−4T+pT2)2 |
| 19 | C2 | (1−6T+pT2)2 |
| 23 | C2 | (1+2T+pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−7T+pT2)2 |
| 37 | C22 | 1−2T2+p2T4 |
| 41 | C22 | 1+6T2+p2T4 |
| 43 | C22 | 1+10T2+p2T4 |
| 47 | C2 | (1−2T+pT2)2 |
| 53 | C2 | (1+3T+pT2)2 |
| 59 | C22 | 1+42T2+p2T4 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C22 | 1+58T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1+127T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1+5T+pT2)2 |
| 89 | C22 | 1+102T2+p2T4 |
| 97 | C22 | 1+175T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.831766250536615909555991793629, −9.745710883923792087820376688981, −8.999396774747180827227301432003, −8.521640902459070146262123743588, −7.80286480238678608669437815722, −7.76977121011768601913358247835, −7.41152490360258934930589333356, −6.92491019420454483770102890154, −6.23668807634405041476143501819, −6.03490131305999332310631451392, −5.60978920086988969726692862806, −5.12800961747859868254216974970, −4.85036360342555564090829170734, −4.31693309753682224821546583327, −3.53307271168479685023107989173, −3.48883838002187822386271183003, −2.80562676525849665288697615059, −2.48726936281705293448809254923, −1.31472464666321829271225485775, −1.09564415871161753804012423175,
1.09564415871161753804012423175, 1.31472464666321829271225485775, 2.48726936281705293448809254923, 2.80562676525849665288697615059, 3.48883838002187822386271183003, 3.53307271168479685023107989173, 4.31693309753682224821546583327, 4.85036360342555564090829170734, 5.12800961747859868254216974970, 5.60978920086988969726692862806, 6.03490131305999332310631451392, 6.23668807634405041476143501819, 6.92491019420454483770102890154, 7.41152490360258934930589333356, 7.76977121011768601913358247835, 7.80286480238678608669437815722, 8.521640902459070146262123743588, 8.999396774747180827227301432003, 9.745710883923792087820376688981, 9.831766250536615909555991793629