Properties

Label 4-1350e2-1.1-c1e2-0-17
Degree $4$
Conductor $1822500$
Sign $1$
Analytic cond. $116.204$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 7-s − 8-s − 2·11-s + 6·13-s + 14-s − 16-s + 4·17-s + 12·19-s − 2·22-s + 23-s + 6·26-s + 9·29-s + 2·31-s + 4·34-s + 4·37-s + 12·38-s − 11·41-s + 4·43-s + 46-s − 7·47-s + 7·49-s − 56-s + 9·58-s − 4·59-s + 7·61-s + 2·62-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.377·7-s − 0.353·8-s − 0.603·11-s + 1.66·13-s + 0.267·14-s − 1/4·16-s + 0.970·17-s + 2.75·19-s − 0.426·22-s + 0.208·23-s + 1.17·26-s + 1.67·29-s + 0.359·31-s + 0.685·34-s + 0.657·37-s + 1.94·38-s − 1.71·41-s + 0.609·43-s + 0.147·46-s − 1.02·47-s + 49-s − 0.133·56-s + 1.18·58-s − 0.520·59-s + 0.896·61-s + 0.254·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1822500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1822500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1822500\)    =    \(2^{2} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(116.204\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1822500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.418635080\)
\(L(\frac12)\) \(\approx\) \(4.418635080\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - T - 22 T^{2} - p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 9 T + 52 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 2 T - 27 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 11 T + 80 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 7 T + 2 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 7 T - 12 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 12 T + 65 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 11 T + 38 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 8 T - 33 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.661551721970156061428062779576, −9.652709068434193011728793665670, −8.904348762536853763362943191910, −8.534239114370644041235166018900, −8.153927211192121552050246523868, −7.899356743076805658758081521360, −7.28249958751412230256077157485, −7.03641321811563206808671022494, −6.26795048789240915354021246679, −6.12705299990550386674174035839, −5.49168491834556954928837097563, −5.13509841862378702042054862255, −4.94421653299149623475874815360, −4.28798078596763913223665098551, −3.49539953319052853498205150878, −3.46938548816308408760051880023, −2.93027409699647923000437327128, −2.23833209356571198125667153809, −1.11919988156753806813512814014, −1.03038065239971203891007142409, 1.03038065239971203891007142409, 1.11919988156753806813512814014, 2.23833209356571198125667153809, 2.93027409699647923000437327128, 3.46938548816308408760051880023, 3.49539953319052853498205150878, 4.28798078596763913223665098551, 4.94421653299149623475874815360, 5.13509841862378702042054862255, 5.49168491834556954928837097563, 6.12705299990550386674174035839, 6.26795048789240915354021246679, 7.03641321811563206808671022494, 7.28249958751412230256077157485, 7.899356743076805658758081521360, 8.153927211192121552050246523868, 8.534239114370644041235166018900, 8.904348762536853763362943191910, 9.652709068434193011728793665670, 9.661551721970156061428062779576

Graph of the $Z$-function along the critical line