L(s) = 1 | + 2-s + 7-s − 8-s − 2·11-s + 6·13-s + 14-s − 16-s + 4·17-s + 12·19-s − 2·22-s + 23-s + 6·26-s + 9·29-s + 2·31-s + 4·34-s + 4·37-s + 12·38-s − 11·41-s + 4·43-s + 46-s − 7·47-s + 7·49-s − 56-s + 9·58-s − 4·59-s + 7·61-s + 2·62-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.377·7-s − 0.353·8-s − 0.603·11-s + 1.66·13-s + 0.267·14-s − 1/4·16-s + 0.970·17-s + 2.75·19-s − 0.426·22-s + 0.208·23-s + 1.17·26-s + 1.67·29-s + 0.359·31-s + 0.685·34-s + 0.657·37-s + 1.94·38-s − 1.71·41-s + 0.609·43-s + 0.147·46-s − 1.02·47-s + 49-s − 0.133·56-s + 1.18·58-s − 0.520·59-s + 0.896·61-s + 0.254·62-s + ⋯ |
Λ(s)=(=(1822500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1822500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1822500
= 22⋅36⋅54
|
Sign: |
1
|
Analytic conductor: |
116.204 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1822500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.418635080 |
L(21) |
≈ |
4.418635080 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C2 | (1−5T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+2T−7T2+2pT3+p2T4 |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−6T+pT2)2 |
| 23 | C22 | 1−T−22T2−pT3+p2T4 |
| 29 | C22 | 1−9T+52T2−9pT3+p2T4 |
| 31 | C22 | 1−2T−27T2−2pT3+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C22 | 1+11T+80T2+11pT3+p2T4 |
| 43 | C22 | 1−4T−27T2−4pT3+p2T4 |
| 47 | C22 | 1+7T+2T2+7pT3+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1+4T−43T2+4pT3+p2T4 |
| 61 | C22 | 1−7T−12T2−7pT3+p2T4 |
| 67 | C2 | (1−16T+pT2)(1+5T+pT2) |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C2 | (1+4T+pT2)2 |
| 79 | C22 | 1−12T+65T2−12pT3+p2T4 |
| 83 | C22 | 1+11T+38T2+11pT3+p2T4 |
| 89 | C2 | (1+T+pT2)2 |
| 97 | C22 | 1−8T−33T2−8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.661551721970156061428062779576, −9.652709068434193011728793665670, −8.904348762536853763362943191910, −8.534239114370644041235166018900, −8.153927211192121552050246523868, −7.899356743076805658758081521360, −7.28249958751412230256077157485, −7.03641321811563206808671022494, −6.26795048789240915354021246679, −6.12705299990550386674174035839, −5.49168491834556954928837097563, −5.13509841862378702042054862255, −4.94421653299149623475874815360, −4.28798078596763913223665098551, −3.49539953319052853498205150878, −3.46938548816308408760051880023, −2.93027409699647923000437327128, −2.23833209356571198125667153809, −1.11919988156753806813512814014, −1.03038065239971203891007142409,
1.03038065239971203891007142409, 1.11919988156753806813512814014, 2.23833209356571198125667153809, 2.93027409699647923000437327128, 3.46938548816308408760051880023, 3.49539953319052853498205150878, 4.28798078596763913223665098551, 4.94421653299149623475874815360, 5.13509841862378702042054862255, 5.49168491834556954928837097563, 6.12705299990550386674174035839, 6.26795048789240915354021246679, 7.03641321811563206808671022494, 7.28249958751412230256077157485, 7.899356743076805658758081521360, 8.153927211192121552050246523868, 8.534239114370644041235166018900, 8.904348762536853763362943191910, 9.652709068434193011728793665670, 9.661551721970156061428062779576