L(s) = 1 | − 2·2-s − 5·4-s − 22·5-s + 12·8-s + 44·10-s + 62·11-s + 64·13-s − 11·16-s + 32·17-s − 162·19-s + 110·20-s − 124·22-s + 170·23-s + 115·25-s − 128·26-s − 128·29-s − 178·31-s + 122·32-s − 64·34-s − 350·37-s + 324·38-s − 264·40-s − 58·41-s + 756·43-s − 310·44-s − 340·46-s + 180·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 5/8·4-s − 1.96·5-s + 0.530·8-s + 1.39·10-s + 1.69·11-s + 1.36·13-s − 0.171·16-s + 0.456·17-s − 1.95·19-s + 1.22·20-s − 1.20·22-s + 1.54·23-s + 0.919·25-s − 0.965·26-s − 0.819·29-s − 1.03·31-s + 0.673·32-s − 0.322·34-s − 1.55·37-s + 1.38·38-s − 1.04·40-s − 0.220·41-s + 2.68·43-s − 1.06·44-s − 1.08·46-s + 0.558·47-s + ⋯ |
Λ(s)=(=(1750329s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1750329s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1750329
= 36⋅74
|
Sign: |
1
|
Analytic conductor: |
6093.28 |
Root analytic conductor: |
8.83513 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1750329, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | | 1 |
good | 2 | D4 | 1+pT+9T2+p4T3+p6T4 |
| 5 | D4 | 1+22T+369T2+22p3T3+p6T4 |
| 11 | D4 | 1−62T+3551T2−62p3T3+p6T4 |
| 13 | D4 | 1−64T+4840T2−64p3T3+p6T4 |
| 17 | D4 | 1−32T+9434T2−32p3T3+p6T4 |
| 19 | D4 | 1+162T+19311T2+162p3T3+p6T4 |
| 23 | D4 | 1−170T+24117T2−170p3T3+p6T4 |
| 29 | D4 | 1+128T+52152T2+128p3T3+p6T4 |
| 31 | D4 | 1+178T+39181T2+178p3T3+p6T4 |
| 37 | D4 | 1+350T+129753T2+350p3T3+p6T4 |
| 41 | D4 | 1+58T+128315T2+58p3T3+p6T4 |
| 43 | D4 | 1−756T+288450T2−756p3T3+p6T4 |
| 47 | D4 | 1−180T+104354T2−180p3T3+p6T4 |
| 53 | D4 | 1−1088T+592538T2−1088p3T3+p6T4 |
| 59 | D4 | 1+508T+174186T2+508p3T3+p6T4 |
| 61 | D4 | 1−152T+459666T2−152p3T3+p6T4 |
| 67 | D4 | 1−468T+88104T2−468p3T3+p6T4 |
| 71 | D4 | 1−14T+193629T2−14p3T3+p6T4 |
| 73 | D4 | 1+788T+930382T2+788p3T3+p6T4 |
| 79 | D4 | 1+476T+940570T2+476p3T3+p6T4 |
| 83 | D4 | 1+1492T+1690008T2+1492p3T3+p6T4 |
| 89 | D4 | 1−230T−8269T2−230p3T3+p6T4 |
| 97 | D4 | 1−640T+1770946T2−640p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.825598914480012675049488847398, −8.808765367792287276066199686761, −8.225301418840038481317918372500, −8.204868214447504008470033654239, −7.38208223884772472850539389718, −7.11735733582857931315557282028, −6.86058063298896491914217281851, −6.25286433625253564777466875682, −5.67431819133354653054082283609, −5.39215020820646574515783636867, −4.34574248222921015659893481514, −4.25101284896703264319687919152, −3.84166157028382341677910983629, −3.75639303810444641708480717361, −2.96470147417517952847425134780, −2.15682772641896408220025382330, −1.24380007062860037366932254682, −1.00912637869304958416781753381, 0, 0,
1.00912637869304958416781753381, 1.24380007062860037366932254682, 2.15682772641896408220025382330, 2.96470147417517952847425134780, 3.75639303810444641708480717361, 3.84166157028382341677910983629, 4.25101284896703264319687919152, 4.34574248222921015659893481514, 5.39215020820646574515783636867, 5.67431819133354653054082283609, 6.25286433625253564777466875682, 6.86058063298896491914217281851, 7.11735733582857931315557282028, 7.38208223884772472850539389718, 8.204868214447504008470033654239, 8.225301418840038481317918372500, 8.808765367792287276066199686761, 8.825598914480012675049488847398