L(s) = 1 | + 3-s + 4-s − 2·7-s + 9-s + 12-s − 4·13-s + 16-s + 8·19-s − 2·21-s + 25-s + 27-s − 2·28-s + 36-s + 12·37-s − 4·39-s − 8·43-s + 48-s + 3·49-s − 4·52-s + 8·57-s + 28·61-s − 2·63-s + 64-s − 24·67-s + 20·73-s + 75-s + 8·76-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1/2·4-s − 0.755·7-s + 1/3·9-s + 0.288·12-s − 1.10·13-s + 1/4·16-s + 1.83·19-s − 0.436·21-s + 1/5·25-s + 0.192·27-s − 0.377·28-s + 1/6·36-s + 1.97·37-s − 0.640·39-s − 1.21·43-s + 0.144·48-s + 3/7·49-s − 0.554·52-s + 1.05·57-s + 3.58·61-s − 0.251·63-s + 1/8·64-s − 2.93·67-s + 2.34·73-s + 0.115·75-s + 0.917·76-s + ⋯ |
Λ(s)=(=(132300s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(132300s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
132300
= 22⋅33⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
8.43556 |
Root analytic conductor: |
1.70423 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 132300, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.041868430 |
L(21) |
≈ |
2.041868430 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C1 | 1−T |
| 5 | C1×C1 | (1−T)(1+T) |
| 7 | C1 | (1+T)2 |
good | 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−14T+pT2)2 |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.437870818355534879168031071986, −9.118954839776025628038155273468, −8.185634457079877915713969006222, −7.983671143656830403181428322838, −7.31970008287706573052341981271, −7.07941601012087388140383379015, −6.44305888127139518988332786048, −5.97975998469911468351052676550, −5.09599254318882530046900067399, −4.95725936124254114017607791343, −3.85422726721423423764474467794, −3.44893990823261081236809071688, −2.69678884580615531725956839791, −2.27051973415844153304852765225, −0.996088059894723745963619169753,
0.996088059894723745963619169753, 2.27051973415844153304852765225, 2.69678884580615531725956839791, 3.44893990823261081236809071688, 3.85422726721423423764474467794, 4.95725936124254114017607791343, 5.09599254318882530046900067399, 5.97975998469911468351052676550, 6.44305888127139518988332786048, 7.07941601012087388140383379015, 7.31970008287706573052341981271, 7.983671143656830403181428322838, 8.185634457079877915713969006222, 9.118954839776025628038155273468, 9.437870818355534879168031071986