Properties

Label 4-130e2-1.1-c2e2-0-1
Degree $4$
Conductor $16900$
Sign $1$
Analytic cond. $12.5474$
Root an. cond. $1.88208$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4·3-s + 2·4-s + 8·6-s + 4·7-s + 8·9-s − 8·12-s + 26·13-s − 8·14-s − 4·16-s + 34·17-s − 16·18-s + 16·19-s − 16·21-s + 36·23-s − 25·25-s − 52·26-s − 36·27-s + 8·28-s + 8·32-s − 68·34-s + 16·36-s − 86·37-s − 32·38-s − 104·39-s + 32·42-s − 4·43-s + ⋯
L(s)  = 1  − 2-s − 4/3·3-s + 1/2·4-s + 4/3·6-s + 4/7·7-s + 8/9·9-s − 2/3·12-s + 2·13-s − 4/7·14-s − 1/4·16-s + 2·17-s − 8/9·18-s + 0.842·19-s − 0.761·21-s + 1.56·23-s − 25-s − 2·26-s − 4/3·27-s + 2/7·28-s + 1/4·32-s − 2·34-s + 4/9·36-s − 2.32·37-s − 0.842·38-s − 8/3·39-s + 0.761·42-s − 0.0930·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16900 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16900\)    =    \(2^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(12.5474\)
Root analytic conductor: \(1.88208\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 16900,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7857435170\)
\(L(\frac12)\) \(\approx\) \(0.7857435170\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
5$C_2$ \( 1 + p^{2} T^{2} \)
13$C_1$ \( ( 1 - p T )^{2} \)
good3$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} \)
7$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2^2$ \( 1 + 158 T^{2} + p^{4} T^{4} \)
17$C_1$$\times$$C_2$ \( ( 1 - p T )^{2}( 1 + p^{2} T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 36 T + 648 T^{2} - 36 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )( 1 + 42 T + p^{2} T^{2} ) \)
31$C_2^2$ \( 1 - 322 T^{2} + p^{4} T^{4} \)
37$C_2^2$ \( 1 + 86 T + 3698 T^{2} + 86 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2^2$ \( 1 - 3262 T^{2} + p^{4} T^{4} \)
43$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 44 T + 968 T^{2} - 44 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 26 T + 338 T^{2} - 26 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2$ \( ( 1 + 32 T + p^{2} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 112 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 36 T + 648 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2^2$ \( 1 - 8482 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 96 T + p^{2} T^{2} )( 1 + 110 T + p^{2} T^{2} ) \)
79$C_2^2$ \( 1 + 1918 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 + 44 T + 968 T^{2} + 44 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2$ \( ( 1 + 82 T + p^{2} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 66 T + 2178 T^{2} + 66 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22887623555332381236373412829, −12.68143861608197412592345106143, −11.99455002783468358983178759317, −11.65737010875452002846007548506, −11.16484451060084725142688729329, −10.90292816643828378046288536594, −10.15014099255294551691877897257, −9.942842535234986450374803335510, −9.089915945262003620367873461091, −8.597679627697170880096830863508, −8.051301431153604804417727448238, −7.36931099472672890617723486896, −6.94336015610517485174488442102, −6.06321908999521924511629452443, −5.39647144297495123359387038652, −5.34362165452267136333468052486, −3.98230745789075088341109485919, −3.33452187059417402387053512670, −1.56919457465351752253050121712, −0.882615403518093266353684998160, 0.882615403518093266353684998160, 1.56919457465351752253050121712, 3.33452187059417402387053512670, 3.98230745789075088341109485919, 5.34362165452267136333468052486, 5.39647144297495123359387038652, 6.06321908999521924511629452443, 6.94336015610517485174488442102, 7.36931099472672890617723486896, 8.051301431153604804417727448238, 8.597679627697170880096830863508, 9.089915945262003620367873461091, 9.942842535234986450374803335510, 10.15014099255294551691877897257, 10.90292816643828378046288536594, 11.16484451060084725142688729329, 11.65737010875452002846007548506, 11.99455002783468358983178759317, 12.68143861608197412592345106143, 13.22887623555332381236373412829

Graph of the $Z$-function along the critical line