Properties

Label 4-12e4-1.1-c8e2-0-3
Degree $4$
Conductor $20736$
Sign $1$
Analytic cond. $3441.29$
Root an. cond. $7.65914$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 616·7-s + 3.69e4·13-s − 2.99e5·19-s + 7.79e5·25-s − 9.33e5·31-s − 1.92e6·37-s + 4.13e6·43-s − 1.12e7·49-s − 7.53e6·61-s − 5.24e7·67-s + 1.41e6·73-s − 7.69e7·79-s − 2.27e7·91-s − 2.22e8·97-s − 7.76e7·103-s − 3.94e8·109-s + 3.41e8·121-s + 127-s + 131-s + 1.84e8·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 0.256·7-s + 1.29·13-s − 2.29·19-s + 1.99·25-s − 1.01·31-s − 1.02·37-s + 1.20·43-s − 1.95·49-s − 0.544·61-s − 2.60·67-s + 0.0499·73-s − 1.97·79-s − 0.331·91-s − 2.51·97-s − 0.689·103-s − 2.79·109-s + 1.59·121-s + 0.588·133-s − 0.746·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20736 ^{s/2} \, \Gamma_{\C}(s+4)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(20736\)    =    \(2^{8} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(3441.29\)
Root analytic conductor: \(7.65914\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 20736,\ (\ :4, 4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.8699881188\)
\(L(\frac12)\) \(\approx\) \(0.8699881188\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 779792 T^{2} + p^{16} T^{4} \)
7$C_2$ \( ( 1 + 44 p T + p^{8} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 341914274 T^{2} + p^{16} T^{4} \)
13$C_2$ \( ( 1 - 18464 T + p^{8} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 123213760 T^{2} + p^{16} T^{4} \)
19$C_2$ \( ( 1 + 149552 T + p^{8} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 116577214 p^{2} T^{2} + p^{16} T^{4} \)
29$C_2^2$ \( 1 - 657268473680 T^{2} + p^{16} T^{4} \)
31$C_2$ \( ( 1 + 466532 T + p^{8} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 964522 T + p^{8} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3199918720640 T^{2} + p^{16} T^{4} \)
43$C_2$ \( ( 1 - 2067160 T + p^{8} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 32170265477090 T^{2} + p^{16} T^{4} \)
53$C_2^2$ \( 1 - 35895671640272 T^{2} + p^{16} T^{4} \)
59$C_2^2$ \( 1 - 233606563353410 T^{2} + p^{16} T^{4} \)
61$C_2$ \( ( 1 + 3766390 T + p^{8} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 26223512 T + p^{8} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 692317131053470 T^{2} + p^{16} T^{4} \)
73$C_2$ \( ( 1 - 709136 T + p^{8} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 38465660 T + p^{8} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 855631324702754 T^{2} + p^{16} T^{4} \)
89$C_2^2$ \( 1 - 3842243579471744 T^{2} + p^{16} T^{4} \)
97$C_2$ \( ( 1 + 111270688 T + p^{8} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.87174022291283144153830503148, −10.96815268702034646721579467437, −10.88693158241756214751416685964, −10.53783247262767241503576627256, −9.794683654202605496758210867552, −8.919933603833023712062914177167, −8.886037891933587907887240653006, −8.309429543436409704063116831151, −7.65705600677337111566177680037, −6.75214182612438913492256372114, −6.64029266732036237996614184314, −5.91634759780228753072648699846, −5.35017552827329753571166505340, −4.42005991478776026307782241703, −4.14311692767731447907255424630, −3.23152302512044785059245317223, −2.74561638055565496121731226438, −1.73525546735351727202685203396, −1.30172055488149637648426209360, −0.23855558646078690303280244525, 0.23855558646078690303280244525, 1.30172055488149637648426209360, 1.73525546735351727202685203396, 2.74561638055565496121731226438, 3.23152302512044785059245317223, 4.14311692767731447907255424630, 4.42005991478776026307782241703, 5.35017552827329753571166505340, 5.91634759780228753072648699846, 6.64029266732036237996614184314, 6.75214182612438913492256372114, 7.65705600677337111566177680037, 8.309429543436409704063116831151, 8.886037891933587907887240653006, 8.919933603833023712062914177167, 9.794683654202605496758210867552, 10.53783247262767241503576627256, 10.88693158241756214751416685964, 10.96815268702034646721579467437, 11.87174022291283144153830503148

Graph of the $Z$-function along the critical line