L(s) = 1 | + 12·7-s + 50·9-s − 60·17-s + 356·23-s − 25·25-s − 40·31-s + 500·41-s − 428·47-s − 578·49-s + 600·63-s + 200·71-s + 460·73-s + 2.64e3·79-s + 1.77e3·81-s − 1.74e3·89-s − 620·97-s + 2.80e3·103-s − 3.02e3·113-s − 720·119-s − 938·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 3.00e3·153-s + ⋯ |
L(s) = 1 | + 0.647·7-s + 1.85·9-s − 0.856·17-s + 3.22·23-s − 1/5·25-s − 0.231·31-s + 1.90·41-s − 1.32·47-s − 1.68·49-s + 1.19·63-s + 0.334·71-s + 0.737·73-s + 3.75·79-s + 2.42·81-s − 2.08·89-s − 0.648·97-s + 2.68·103-s − 2.51·113-s − 0.554·119-s − 0.704·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s − 1.58·153-s + ⋯ |
Λ(s)=(=(1638400s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1638400s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1638400
= 216⋅52
|
Sign: |
1
|
Analytic conductor: |
5703.63 |
Root analytic conductor: |
8.69036 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1638400, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
4.655432611 |
L(21) |
≈ |
4.655432611 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C2 | 1+p2T2 |
good | 3 | C22 | 1−50T2+p6T4 |
| 7 | C2 | (1−6T+p3T2)2 |
| 11 | C22 | 1+938T2+p6T4 |
| 13 | C22 | 1−1894T2+p6T4 |
| 17 | C2 | (1+30T+p3T2)2 |
| 19 | C22 | 1−12118T2+p6T4 |
| 23 | C2 | (1−178T+p3T2)2 |
| 29 | C22 | 1−21222T2+p6T4 |
| 31 | C2 | (1+20T+p3T2)2 |
| 37 | C22 | 1−101206T2+p6T4 |
| 41 | C2 | (1−250T+p3T2)2 |
| 43 | C22 | 1−138850T2+p6T4 |
| 47 | C2 | (1+214T+p3T2)2 |
| 53 | C22 | 1−57654T2+p6T4 |
| 59 | C22 | 1+229242T2+p6T4 |
| 61 | C22 | 1−391462T2+p6T4 |
| 67 | C22 | 1−2450T2+p6T4 |
| 71 | C2 | (1−100T+p3T2)2 |
| 73 | C2 | (1−230T+p3T2)2 |
| 79 | C2 | (1−1320T+p3T2)2 |
| 83 | C22 | 1−179250T2+p6T4 |
| 89 | C2 | (1+874T+p3T2)2 |
| 97 | C2 | (1+310T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.488545604752342363081879971220, −9.131089968054584979756754053159, −8.874187213699615644288686830090, −8.129790602217912885143406274182, −7.83814030334685579067299963198, −7.53436504593675575672507494707, −6.86357055416189943977394512739, −6.78146669340449770858592991616, −6.43785196334441514812062745085, −5.68051938983478884997798942980, −4.99512330486873872905173745811, −4.79012015147302774856233374044, −4.64680339207890780948939755518, −3.72450453715078031695408496850, −3.63602816428242171539743033320, −2.69988355327150261673269357363, −2.31716885589250679000601961940, −1.41265709925717057253174356607, −1.29823691443167736644770991193, −0.53820478406691833161297783093,
0.53820478406691833161297783093, 1.29823691443167736644770991193, 1.41265709925717057253174356607, 2.31716885589250679000601961940, 2.69988355327150261673269357363, 3.63602816428242171539743033320, 3.72450453715078031695408496850, 4.64680339207890780948939755518, 4.79012015147302774856233374044, 4.99512330486873872905173745811, 5.68051938983478884997798942980, 6.43785196334441514812062745085, 6.78146669340449770858592991616, 6.86357055416189943977394512739, 7.53436504593675575672507494707, 7.83814030334685579067299963198, 8.129790602217912885143406274182, 8.874187213699615644288686830090, 9.131089968054584979756754053159, 9.488545604752342363081879971220