L(s) = 1 | + 3-s − 8·7-s + 3·9-s − 6·11-s + 2·13-s + 6·17-s + 7·19-s − 8·21-s + 6·23-s + 5·25-s + 8·27-s + 4·31-s − 6·33-s + 20·37-s + 2·39-s − 9·41-s − 4·43-s + 34·49-s + 6·51-s + 6·53-s + 7·57-s − 9·59-s − 4·61-s − 24·63-s − 7·67-s + 6·69-s + 6·71-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 3.02·7-s + 9-s − 1.80·11-s + 0.554·13-s + 1.45·17-s + 1.60·19-s − 1.74·21-s + 1.25·23-s + 25-s + 1.53·27-s + 0.718·31-s − 1.04·33-s + 3.28·37-s + 0.320·39-s − 1.40·41-s − 0.609·43-s + 34/7·49-s + 0.840·51-s + 0.824·53-s + 0.927·57-s − 1.17·59-s − 0.512·61-s − 3.02·63-s − 0.855·67-s + 0.722·69-s + 0.712·71-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.993492983 |
L(21) |
≈ |
1.993492983 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C2 | 1−7T+pT2 |
good | 3 | C22 | 1−T−2T2−pT3+p2T4 |
| 5 | C22 | 1−pT2+p2T4 |
| 7 | C2 | (1+4T+pT2)2 |
| 11 | C2 | (1+3T+pT2)2 |
| 13 | C2 | (1−7T+pT2)(1+5T+pT2) |
| 17 | C22 | 1−6T+19T2−6pT3+p2T4 |
| 23 | C22 | 1−6T+13T2−6pT3+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C2 | (1−2T+pT2)2 |
| 37 | C2 | (1−10T+pT2)2 |
| 41 | C22 | 1+9T+40T2+9pT3+p2T4 |
| 43 | C22 | 1+4T−27T2+4pT3+p2T4 |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C22 | 1−6T−17T2−6pT3+p2T4 |
| 59 | C22 | 1+9T+22T2+9pT3+p2T4 |
| 61 | C22 | 1+4T−45T2+4pT3+p2T4 |
| 67 | C22 | 1+7T−18T2+7pT3+p2T4 |
| 71 | C22 | 1−6T−35T2−6pT3+p2T4 |
| 73 | C22 | 1−T−72T2−pT3+p2T4 |
| 79 | C2 | (1−17T+pT2)(1+13T+pT2) |
| 83 | C2 | (1+3T+pT2)2 |
| 89 | C22 | 1+6T−53T2+6pT3+p2T4 |
| 97 | C22 | 1+17T+192T2+17pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.892050146137477846198667778016, −9.648076560967476764093598862214, −9.248943792876180282106526506103, −8.888678574573461179085764885642, −8.204052810644402587360936798804, −7.900225712865470621351691421551, −7.44424171897927928764187474818, −7.05006633339860145427753795746, −6.63394717743279723533903728594, −6.35575204356113544667431827066, −5.65396617700276012431969186488, −5.48198430761843276797236102550, −4.76468475562860726325209260769, −4.29876058044247304345007542289, −3.35407486990990152512571686815, −3.29096627504812227289805055781, −2.78225318144012742940223962659, −2.72847360440711388628494488929, −1.21483248383309752623603914887, −0.66564732616554931686820538104,
0.66564732616554931686820538104, 1.21483248383309752623603914887, 2.72847360440711388628494488929, 2.78225318144012742940223962659, 3.29096627504812227289805055781, 3.35407486990990152512571686815, 4.29876058044247304345007542289, 4.76468475562860726325209260769, 5.48198430761843276797236102550, 5.65396617700276012431969186488, 6.35575204356113544667431827066, 6.63394717743279723533903728594, 7.05006633339860145427753795746, 7.44424171897927928764187474818, 7.900225712865470621351691421551, 8.204052810644402587360936798804, 8.888678574573461179085764885642, 9.248943792876180282106526506103, 9.648076560967476764093598862214, 9.892050146137477846198667778016