L(s) = 1 | − 6·5-s − 6·9-s + 8·13-s − 6·17-s + 17·25-s − 16·37-s + 36·45-s + 11·49-s + 12·53-s + 10·61-s − 48·65-s − 22·73-s + 27·81-s + 36·85-s − 20·89-s − 24·97-s + 4·101-s − 12·109-s − 8·113-s − 48·117-s + 3·121-s − 18·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | − 2.68·5-s − 2·9-s + 2.21·13-s − 1.45·17-s + 17/5·25-s − 2.63·37-s + 5.36·45-s + 11/7·49-s + 1.64·53-s + 1.28·61-s − 5.95·65-s − 2.57·73-s + 3·81-s + 3.90·85-s − 2.11·89-s − 2.43·97-s + 0.398·101-s − 1.14·109-s − 0.752·113-s − 4.43·117-s + 3/11·121-s − 1.60·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
−1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1+pT2)2 |
| 5 | C2 | (1+3T+pT2)2 |
| 7 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 11 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C2 | (1+3T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 37 | C2 | (1+8T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 47 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 61 | C2 | (1−5T+pT2)2 |
| 67 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 71 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 73 | C2 | (1+11T+pT2)2 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C2 | (1+12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.86378097245535978247876093758, −7.18059484484420096366454394254, −6.98286792123187236566096654142, −6.56370906167522668644909842214, −5.76283520417985127913399041730, −5.67103421999051188975454804232, −5.05210681704737714861605588166, −4.14385266867940367577820086585, −4.09350585892641493698723914863, −3.71418757784612877583046899350, −3.10630100563499367104455654686, −2.78320977751625677782435169813, −1.77861406991832868392707836598, −0.65261125406809044714433414915, 0,
0.65261125406809044714433414915, 1.77861406991832868392707836598, 2.78320977751625677782435169813, 3.10630100563499367104455654686, 3.71418757784612877583046899350, 4.09350585892641493698723914863, 4.14385266867940367577820086585, 5.05210681704737714861605588166, 5.67103421999051188975454804232, 5.76283520417985127913399041730, 6.56370906167522668644909842214, 6.98286792123187236566096654142, 7.18059484484420096366454394254, 7.86378097245535978247876093758