L(s) = 1 | + 2·5-s − 6·9-s + 14·17-s − 7·25-s − 12·45-s − 5·49-s − 30·61-s + 22·73-s + 27·81-s + 28·85-s + 20·101-s + 3·121-s − 26·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 84·153-s + 157-s + 163-s + 167-s + 26·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s + 3.39·17-s − 7/5·25-s − 1.78·45-s − 5/7·49-s − 3.84·61-s + 2.57·73-s + 3·81-s + 3.03·85-s + 1.99·101-s + 3/11·121-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 6.79·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.014351525 |
L(21) |
≈ |
2.014351525 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C2 | 1+pT2 |
good | 3 | C2 | (1+pT2)2 |
| 5 | C2 | (1−T+pT2)2 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 13 | C2 | (1−pT2)2 |
| 17 | C2 | (1−7T+pT2)2 |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−pT2)2 |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1−T+pT2)(1+T+pT2) |
| 47 | C2 | (1−13T+pT2)(1+13T+pT2) |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+15T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−11T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C2 | (1−pT2)2 |
| 97 | C2 | (1−pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.733159759828253484517382507585, −9.598640470651873021927810079484, −9.289689289756409509468176085632, −8.730652112905267376001911698192, −8.182529881711780159313974762446, −7.892461696995965956192970964650, −7.72824453972356422499019613261, −7.14724539298870820808912222030, −6.27600795084745381564055865545, −6.05933519784711203569568899208, −5.84570053584007553397729896467, −5.27621839607647452944859918194, −5.19137696551245104377824290314, −4.36506464712612395828591044825, −3.44894845950579846685311982810, −3.33993944117661109114552992065, −2.88082250231297329570457088281, −2.10492350651637610444647579425, −1.54550165955808104194140134970, −0.61090724662325347051808232074,
0.61090724662325347051808232074, 1.54550165955808104194140134970, 2.10492350651637610444647579425, 2.88082250231297329570457088281, 3.33993944117661109114552992065, 3.44894845950579846685311982810, 4.36506464712612395828591044825, 5.19137696551245104377824290314, 5.27621839607647452944859918194, 5.84570053584007553397729896467, 6.05933519784711203569568899208, 6.27600795084745381564055865545, 7.14724539298870820808912222030, 7.72824453972356422499019613261, 7.892461696995965956192970964650, 8.182529881711780159313974762446, 8.730652112905267376001911698192, 9.289689289756409509468176085632, 9.598640470651873021927810079484, 9.733159759828253484517382507585