L(s) = 1 | − 5·9-s − 2·13-s − 10·17-s − 10·25-s + 6·29-s − 4·37-s − 16·41-s − 5·49-s − 18·53-s − 28·61-s + 18·73-s + 16·81-s − 24·89-s + 28·97-s + 28·101-s − 14·109-s − 36·113-s + 10·117-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 50·153-s + 157-s + ⋯ |
L(s) = 1 | − 5/3·9-s − 0.554·13-s − 2.42·17-s − 2·25-s + 1.11·29-s − 0.657·37-s − 2.49·41-s − 5/7·49-s − 2.47·53-s − 3.58·61-s + 2.10·73-s + 16/9·81-s − 2.54·89-s + 2.84·97-s + 2.78·101-s − 1.34·109-s − 3.38·113-s + 0.924·117-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 4.04·153-s + 0.0798·157-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1+T+pT2)2 |
| 17 | C2 | (1+5T+pT2)2 |
| 23 | C2 | (1−T+pT2)(1+T+pT2) |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+2T+pT2)2 |
| 41 | C2 | (1+8T+pT2)2 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1+9T+pT2)2 |
| 59 | C2 | (1−T+pT2)(1+T+pT2) |
| 61 | C2 | (1+14T+pT2)2 |
| 67 | C2 | (1−13T+pT2)(1+13T+pT2) |
| 71 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 73 | C2 | (1−9T+pT2)2 |
| 79 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 83 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 89 | C2 | (1+12T+pT2)2 |
| 97 | C2 | (1−14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.74515606034087698025852781244, −6.73715959969007181198215210739, −6.72377104864689556277323751664, −6.17043864352631516446211866530, −5.90719710332910393553929521875, −5.03277316009204668285879882866, −4.99527268882455447172353841146, −4.41313931480294198592546395456, −3.81156163044135505245852369486, −3.09698588528238924660584466755, −2.89182953598080292522833763992, −2.01374174404058579498750722555, −1.78091799751097958894751684261, 0, 0,
1.78091799751097958894751684261, 2.01374174404058579498750722555, 2.89182953598080292522833763992, 3.09698588528238924660584466755, 3.81156163044135505245852369486, 4.41313931480294198592546395456, 4.99527268882455447172353841146, 5.03277316009204668285879882866, 5.90719710332910393553929521875, 6.17043864352631516446211866530, 6.72377104864689556277323751664, 6.73715959969007181198215210739, 7.74515606034087698025852781244